eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2012.1.05



The present study investigates pyrolysis kinetics of raw and pretreated Göynük oil shales by thermogravimetric analysis (TGA). Samples were treated with HCl, HNO3 and HF solutions and characterized by TGA data. All experiments were carried out at a heating rate of 5 K min–1, in the temperature range of 25–1000 °C under the nitrogen atmosphere. Coats-Redfern method was used to determine the kinetic parameters of the activation energy using the data from thermogravimetric analysis. From the kinetic analysis it was concluded that Göynük oil shale samples have two reaction regions and the activation energies of the first region are lower.


  1. Kök, M. V. Geological considerations for the economic evaluation of Turkish oil shale deposits and their combustion-pyrolysis behavior (review). – International Oil Shale Conference “Recent Trends in Oil Shale”, 7–9 November 2006, Amman, Jordan. Paper No. rtos-A103.

  2. Şener, M., Şengüler, İ., Kök, M. V. Geological considerations for the economic evaluation of oil shale deposits in Turkey // Fuel. 1994. Vol. 74, No.7. P. 999–1003.

  3. Ballice, L., Yüksel, M., Sağlam, M. Schulz, H. Evolution of volatile products from Göynük (Turkey) oil shales by temperature programmed pyrolysis // Fuel. 1997. Vol. 76, No. 5. P. 375–380.

  4. Savest, N., Hruljova, J., Oja, V. Characterization of thermally pretreated kukersite oil shale using the solvent-swelling technique // Energ. Fuel. 2009. Vol. 23, No. 12. P. 5972–5977.

  5. Torrente, M. C., Galán, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) // Fuel. 2001. Vol. 80, No. 3. P. 327–334.

  6. Kök, M. V., İşcan, A. G. Oil shale kinetics by differential methods // J. Thermal Anal. Calorim. 2007. Vol. 88, No. 3. P. 657–661.

  7. Thakur, D. S., Nuttal, H. E. Kinetics of pyrolysis Moroccon oil shale by thermo­gravimetry // Ind. Eng. Chem. Res. 1987. Vol. 26, No. 7. P. 1351–1356.

  8. Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales // Fuel. 1998. Vol. 77, No. 12. P. 1303–1309.

  9. Kök, M. V. Thermal investigation of Seyitomer oil shale // Thermochim. Acta. 2001. Vol. 369, No. 1–2. P. 149–155.

10. Evans, R. J., Felbeck Jr., G. T. High temperature simulation of petroleum formation – II. Effect of inorganic sedimentary constituents on hydrocarbon formation // Org. Geochem. 1983. Vol. 4, No. 3–4. P. 145–152.

11. Ballice, L. Stepwise chemical demineralization of Göynük (Turkey) oil shale and pyrolysis of demineralization products // Ind. Eng. Chem. Res. 2006. Vol. 45, No. 3. P. 906–912.

12. Acholla, F. V., Orr, W. L. Pyrite removal from kerogen without altering organic matter: the chromous chloride method // Energ. Fuel. 1993. Vol. 7, No. 3. P. 406–410.

13. Chen, H., Li, B., Zhang, B. The effect of acid treatment on the removal of pyrite in coal // Fuel. 1999. Vol. 78, No. 10. P. 1237–1238.

14. Sert, M., Ballice, L., Yüksel, M., Sağlam, M. Effect of mineral matter on product yield and composition at isothermal pyrolysis of Turkish oil shales // Oil Shale. 2009. Vol. 26, No. 4. P. 463–474.

15. Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data // Nature. 1964. Vol. 201, No. 4914. P. 68–69.

16. Kissinger, H. E. Reaction kinetics in differential thermal analysis // Anal. Chem. 1957. Vol. 29, No. 11. P. 1702–1706.

17. Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic // J. Polym. Sci., Part C: Polym. Symp. 1964. Vol. 6, No. 1. P. 183–195.

18. Flynn, J. H., Wall, L. A. A quick, direct method for the determination of activa­tion energy from thermogravimetric data // J. Polym. Sci., Part C: Polym. Lett. 1966. Vol. 4, No. 5. P. 323–328.

19. Criado, J. M. Kinetic analysis of DTG data from master curves // Termochim. Acta. 1978. Vol. 24, No. 1. P. 186–189.

20. Ballice, L., Sağlam, M. Co-pyrolysis of Göynük-oil shale and Şırnak-asphaltite from Turkey and analysis of co-pyrolysis products by capillary GC total stream sampling technique // Fuel. 2003. Vol. 82, No. 5. P. 511–522.

21. Sert, M., Ballice, L., Yüksel, M., Sağlam, M., Erdem, S. Fast pyrolysis of Şirnak asphaltite (Turkey) and characterization of pyrolysis products // Energ. Source. 2008. Vol. 30, No. 8. P. 671–680.

22. Saxby, J. D. Isolation of kerogen in sediments by chemical methods // Chem. Geol. 1970. Vol. 6. P. 173–184.

23. Aboulkas, A., El Harfi, K., El Bouadili, A., Benchanaa, M., Mokhlisse, A., Outzourit, A. Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene // Oil Shale. 2007. Vol. 24, No. 1. P. 15–33.

24. Yağmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of Göynük oil shale // J. Therm. Anal. Calorim. 2006. Vol. 86, No. 2. P. 479–482.

25. Sonibare, O. O., Ehinola, O. A., Egashira, R. Thermal and geochemical charac­terization of Lokpanta oil shales, Nigeria // Energ. Convers. Manage. 2005. Vol. 46, No. 15–16. P. 2335–2344.

26. Doğan, Ö. M., Uysal, B. Z. Non-isothermal pyrolysis kinetics of three Turkish oil shales // Fuel. 1996. Vol. 75, No. 12. P. 1424–1428.

27. Wang, Q., Sun, B. Z., Hu, A. J., Bai, J. R., Li, S. H. Pyrolysis characteristics of Huadian oil shales // Oil Shale. 2007. Vol. 24, No. 2. P. 147–157.

Back to Issue