eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2010.4.02

Series of experiments on flash pyrolysis of fine-grained particles of kukersite oil shale were carried out on a laboratory-scale installation operated with gaseous heat carrier. It was shown that practically the whole of organic matter turns into volatile products at temperatures higher than 900 K. The pyrolysis gas consists of saturated and unsaturated hydrocarbons, CO2, H2, CO, and H2S, and belongs to high-calorific fuels with lower calorific value of 33 MJ/Nm3. The yield of liquid products reaches its maximum (70%) in the temperature range 850–900 K. Kinetic parameters of formation of the volatile components were determined on the basis of obtained experimental data and available structural characteristics of kukersite kerogen. As the first approximation, the formation of shale oil components can be described by a single rate constant 6.3 x 1013exp(–25600/T) s–1. Their decomposition is governed by the rate constant 1.7 x 1010exp(–20480/T) s–1.

  1. Qian, J., Wang, J. World oil shale retorting technologies // Int. Conf. on Oil Shale: ⌠Recent Trends in Oil Shale, 7–9 November 2006, Amman, Jordan, Paper No. A-118.

  2. Fainberg, V., Hetsroni, G. Oil shale as an energy source in Israel // Energ. Source. 1996. Vol. 18, No. 1. P. 95–105.

  3. Golubev, N. Solid heat carrier technology for oil shale retorting // Oil Shale. 2003. Vol. 20, No. 3S. P. 324–332.

  4. Brendow, K. Global oil shale issues and perspectives // Oil Shale. 2003. Vol. 20, No. 1. P. 81–92.

  5. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shake processing // Oil Shale. 2003. Vol. 20, No. 3. P. 311–323.

  6. Zhao, Y. H., He, Y. G. Utilization of retort gas as fuel for internal combustion engine for producing power // Oil Shale. 2005. Vol. 22, No. 1. P. 21–24.

  7. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale // Prog. Energ. Combust. 2007. Vol. 33, No. 6. P. 552–579.

  8. Russell, P. L. Oil Shales of the World: Their Origin, Occurrence, and Exploita­tion. – Oxford: Pergamon Press, 1990.

  9. Abu-Qudais, M., Al-Widyan, M. I. Performance and emissions characteristics of a diesel engine operating on shale oil // Energ. Convers. Manage. 2002. Vol. 43, No. 5. P. 673–682.

10. Akar, A., Ekinci, E. Production of chemicals from oil shales // Fuel. 1995. Vol. 74, No. 8. P. 1113–1117.

11. Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales // Energy. 1999. Vol. 24, No. 9. P. 761–781.

12. Aboulkas, A., El Harfi, K., El Bouadili, A. Kinetic and mechanism of Tarfaya (Morocco) oil shale and LDPE mixture pyrolysis // J. Mater. Process. Tech. 2008. Vol. 206, No. 1–3. P. 16–24.

13. Johannes, I., Zaidentsal, A. Kinetics of low-temperature retorting of kukersite oil shale // Oil Shale. 2008. Vol. 25, No. 4. P. 412–425.

14. Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of Beypazari oil shale by pyrolysis // J. Anal. Appl. Pyrol. 2002. Vol. 64, No.1. P. 29–41.

15. Udaja, P., Duffi, G. J., Chensee, M. D. Coking reactivities of Australian shale oils // Fuel. 1990. Vol. 69, No. 9. P. 1150–1154.

16. Khraisha, Y. H. Flash pyrolysis of oil shales in fluidized bed reactor // Energ. Convers. Manage. 2000. Vol. 41, No. 16. P. 1729–1739.

17. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by  13C MAS NMR spectra // Fuel. 2003. Vol. 82, No. 7. P. 799–804.

18. Kiselev, A. V., Yashin, Ya. I. Gas-Adsorption Chromatography. – New York: Plenum Press, 1969.

19. Preparative Liquid Chromatography / B. A. Bidlingmeyer (ed). – Amsterdam: Elsevier, 1987.

20. Vandenbroucke, M., Largeau, C. Kerogen origin, evolution and structure // Org. Geochem. 2007. Vol. 38, No. 5. P. 719–833.

21. Riboulleau, A., Derenne, S., Sarret, G., Largeau, C., Baudin, F., Connan, J. Pyro­lytic and spectroscopic study of a sulphur-rich kerogen from “Kashpir oil shales”(Upper Jurassic, Russian platform) // Org. Geochem. 2000. Vol. 31, No. 12. P. 1641–1661.

22. Ganz, H., Kalkreuth, W. Application of infrared spectroscopy to the classifica­tion of kerogen types and the evaluation of source rock and oil shale potentials // Fuel. 1987. Vol. 66, No. 5. P. 708–711.

23. Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damste, J. S., Tegelaar, E. W., de Leeuw, J. W. Characterization of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen // Org. Geochem. 1990. Vol. 16, No. 4–6. P. 873–888.

24. Bajc, S., Ambles, A., Largeau, C., Derenne, S., Vitorović, D. Precursor bio­structures in kerogen matrix revealed by oxidative degradation: oxidation of kerogen from Estonian kukersite // Org. Geochem. 2001. Vol. 32, No. 6. P. 773–784.

25. Mastalerz, M., Schimmelmann, A., Hower, J. C., Lis, G., Hatch, J., Jacob­son, S. R. Chemical and isotopic properties of kukersites from Iowa and Estonia // Org. Geochem. 2003. Vol. 34, No. 10. P. 1419–1427.

26. Miknis, F. P., Turner, T. F. The bitumen intermediate in isothermal and nonisothermal decomposition of oil shales // Composition, Geochemistry and Conversion of Oil Shales / C. Snape (ed.). Dordrecht: Kluwer Academic Publishers, 1995. P. 295–311.

27. Gerasimov, G. Ya. Modeling of the process of pyrolysis of oil shale particles // J. Eng. Phys. Thermophys. 2003. Vol. 76, No. 6. P. 1310–1317.

28. Karabakan, A., Yürüm, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales // Fuel. 1998. Vol. 77, No. 12. P. 1303–1309.

29. Torrente, M. C., Galán, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) // Fuel. 2001. Vol. 80, No. 3. P. 327–334.

30. Li, S., Yue, C. Study of pyrolysis kinetics of oil shale // Fuel. 2003. Vol. 82, No. 3. P. 337–342.

31. Aboulkas, A., El Harfi, K. Study of the kinetics and mechanisms of the thermal decomposition of Moroccan Tarfaya oil shale and its kerogen // Oil Shale. 2008. Vol. 25, No. 4. P. 426–443.

32. Skala, D., Kopsen, H., Sokić, M., Neumann, H.-J., Jovanović, J. Modelling and simulation of oil shale pyrolysis // Fuel. 1989. Vol. 68, No. 2. P. 168–173.

33. Khraisha, Y. H.Kinetics of isothermal pyrolysis of Jordan oil shale // Energ. Convers. Manage. 1998. Vol. 39, No. 3–4. P. 157–165.

34. Skala, D., Kopsen, H., Sokić, M., Neumann, H.-J., Jovanović, J. A. Kinetics and modelling of oil shale pyrolysis // Fuel. 1990. Vol. 69, No. 4. P. 490–496.

35. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales // Appl. Energ. 1999. Vol. 63, No. 4. P. 269–286.

36. Behar, F., Kressmann, S., Rudkiewicz, J. L., Vandenbroucke, M. Experimental simulation in a confined system and kinetic modelling of kerogen and oil cracking // Org. Geochem. 1992. Vol. 19, No. 1–3. P. 173–189.

37. Tegelaar, E. W., Noble, R. A. Kinetics of hydrocarbon generation as a function of the molecular structure of kerogen as revealed by pyrolysis-gas chromato­graphy // Org. Geochem. 1994. Vol. 22, No.3–5. P. 543–574.

38. Behar, F., Vandenbroucke, M., Tang, Y., Marquis, F., Espitalie, J. Thermal crack­ing of kerogen in open and closed systems: determination of kinetic parameters and stoichiometric coefficients for oil and gas generation // Org. Geochem. 1997. Vol. 26, No. 5–6. P. 321–339.

39. Solomon, P. R., Serio, M. A., Suuberg, E. M.Coal pyrolysis: experiments, kinetic rates and mechanisms // Prog. Energ. Combust. 1992. Vol. 18, No. 2. P. 133–220.

40. Gerasimov, G. Ya., Pogosbekyan, Yu. M. Investigation of gas release from molds // J. Eng. Phys. Thermophys. 2007. Vol. 80, No. 3. P. 545–554.

41. Zou, R., Lou, Q., Mo, S., Feng, S.Study on a kinetic model of atmospheric gas oil pyrolysis and coke deposition // Ind. Eng. Chem. Res. 1993. Vol. 32, No. 5. P. 843–847.

42. Kavianian, H. R., Yesavage, V. F., Dickson, P. F., Peters, R. W. Kinetic simula­tion model for steam pyrolysis of shale oil feedstock // Ind. Eng. Chem. Res. 1990. Vol. 29, No. 4. P. 527–534.
Back to Issue