eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2010.4.07


The composition of oil shale ashes from pulverized firing (PF) and circulat­ing fluidized-bed boiler combustion (CFB) systems at the Eesti and the Balti Thermal Power Plants was studied by means of quantitative X-ray dif­frac­tion, chemical analysis and scanning electron microscopy. The composi­tion of ash varies systematically in the boiler gas pass, depending on the firing technology. PF ashes are dominated by free lime, whose content decreases from the furnace to the last fields of electrostatic precipitators. Same trends can be observed within residual fraction (i.e. mineral phases remaining in firing process) and Ca-silicates. Anhydrite, on the other hand, concentrates into the end of the gas pass. CFB ash shows more complex variations, and on several occasion the changes in certain phases are opposite to variations in respective PF ashes. Comparison of the phase composition of ashes from the same type of boilers in the Eesti and Balti TPP show remarkable differences in Ca-silicate phases. To our best knowledge, earlier mineralogical studies have not addressed compositional variations of ashes from two separate power plants. These differences are probably related to the heterogeneity of oil shale fuel, not so much to combustion temperature.

  1. Bauert, H., Kattai, V. Kukersite oil shale // Geology and Mineral Resources of Estonia / A. Raukas, A. Teedumae (eds.). Tallinn: Estonian Academy Publishers, 1997. P. 313–327.

  2. Kuusik, R., Uibo, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers // Oil Shale. 2005. Vol. 22, No. 4 S. P. 407–420.

  3. Ots, A. Oil Shale Fuel Combustion. – Tallinn, Tallinna Raamatutrükikoda, 2006.

  4. Liblik, V., Kaasik, M., Pensa, M., Rätsep, A., Rull, E., Tordik, A. Reduction of sulphur dioxide emissions and transboundary effects of oil shale based energy production // Oil Shale. 2006. Vol. 23, No. 1. P. 29–38.

  5. Narva Power Plants. (Accessed 10 March 2010) [in Estonian].

  6.  Development Plan of the Estonian Electricity Sector until public/ELMAK_EN.pdf.

  7. Liiv, S. Oil shale energetics in Estonia // Oil Shale. 2007. Vol. 24, No. 1. P. 1–4.

  8. Liira, M., Kirsimäe, K., Kuusik, R., Mõtlep, R. Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions // Fuel. 2009. Vol. 88, No. 4. P. 712–718.

  9. Dilaktorski, N. Theoretical basis for the utilization of the mineral compound of oil-shale in building materials industry // Studies on Building. 1962. Vol. 3. P. 5–45 [in Russian, Summary in English].

10. Kikas, V. Mineral matter of kukersite oil shale and its utilization // Oil Shale. 1988. Vol. 5, No. 1. P. 15–28 [in Russian, Summary in English].

11. Arro, H., Pihu, T., Prikk, A., Rootamm, R., Konist, A. Comparison of ash from PF and CFB boilers and behavior of ash in ash fields. – 20th International Conference on Circulating Fluidized Bed, Xian City, China, May 18–20, 2009.

12. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic trans­forma­tion and alkalinity potential of oil shale ash sediments // J. Hazard. Mater. 2010. Vol. 184, No. 1–3. P. 567–573.

13. Hanni, R. Energy and valuable material by-product from firing Estonian oil shale // Waste Manage. 1996. Vol. 16, No. 1–3. P. 97–99.

14. Paat, A. About the mineralogical composition of Estonian oil shale ash // Oil Shale. 2002. Vol. 19, No. 3. P. 321–333.

15. Pets, L., Vaganov, P., Knoth, J., Haldna, Ü., Shwenke, H., Schnier, C., Juga, R. Microelements in oil-shale ash of the Baltic Thermoelectric Power Plant // Oil Shale. Vol. 2, No. 4. P. 379–390 [in Russian, Summary in English].

16. Hotta, A., Uus, M., Parkkonen, R. Enhanced Performance Using CFB Boilers to Fire Oil Shale Compared to PC Technology. – POWER-GEN Europe 2005, Milan, Italy.

17. Pihu, T., Arro, H., Prikk, A., Parve, T., Loosaar, J. Combustion experience of Estonian oil shale in large power plants.–International Conference on Oil Shale: "Recent Trends in Oil Shale", 7–9 November 2006, Amman, Jordan.

18. Trikkel, A., Zevenhoven, R., Kuusik, R. Modelling SO2 capture by Estonian limestones and dolomites // Proc. Est. Acad. Sci. Chem. 2000. Vol. 49, No. 1. P. 53–70.

19. Antony, E. J., Grananstein, D. L. Sulphatation phenomena in fluidized bed combustion systems // Prog. Energ. Combust. 2001. Vol. 27, No. 1. P. 215–256.

20. Paat, A., Traksmaa, R. Investigation of the mineral composition of Estonian oil-shale ash using X-ray diffractometry // Oil Shale. 2002. Vol. 19, No. 4. P. 373–386.

21. Kattai, V., Saadre, T., Savitski, L. Estonian Oil Shale: Geology, Ressurces, Mining Conditions – Tallinn: Estonian Geology Center, 2000. P. 226 [in Estonian, Summary in English].

22. Vingisaar, P., Kattai, V., Utsal, K. The composition of the kukersite in the Baltic Oil Shale Basin // Proc. Est. Acad. Sci. Geol. 1984. Vol. 33, No. 2. P. 55–62 [in Russian, Summary in English].
Back to Issue