ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

GEOCHEMISTRY OF RARE EARTH ELEMENTS IN MARINE OIL SHALE – A CASE STUDY FROM THE BILONG CO AREA, NORTHERN TIBET, CHINA; pp. 194–208

Full article in PDF format | doi: 10.3176/oil.2010.3.02

Authors
XIUGEN FU, JIAN WANG, YUHONG ZENG, FUWEN TAN, WENBIN CHEN, XINGLEI FENG

Abstract
The Bilong Co oil shale zone is located in the South Qiangtang depression. This zone, together with the Shengli River-Changshe Mountain oil shale zone in the North Qiangtang depression, northern Tibet plateau, represents a potentially large marine oil shale resource in China. The content and modes of occurrence of rare earth elements (REEs) in selected oil shale samples from the Bilong Co area were studied by inductively-coupled plasma mass spectrometer (ICP-MS) and statistical methods, respectively. The total organic carbon (TOC) content (6.75–19.20%) of oil shale samples is high with low or moderate total sulfur (St, d) content (1.05–2.00%) and inter­mediate shale oil content. The total rare earth element (∑REE) content of oil shale samples ranges from 63.69 to 117.85 μg/g. The average REE content of 13 oil shale samples from the Bilong Co area is slightly higher than that of USA coals and micritic limestone samples from the Bilong Co area, but lower than that of worldwide black shales. The oil shale samples from the Bilong Co area show shale-like chondrite or NASC-normalized REE patterns similar to those of micritic limestone samples from this area, indicating that REEs of these different lithological samples may have been derived from a similar terrigenous source. REE content of oil shale samples is highly positively correlated with ash yield and shows a positive correlation with Fe and a negative correlation with organic sulfur, and the vertical variations of REEs mainly follow those of Si, Al, K, Na and Ti. All these facts indicate that the REE content in oil shale seams is mainly controlled by clay minerals and, to a less extent, by pyrite, as well as partly associated with oil shale organic constituents.
References

  1. Dyni, J. R. Oil shale developments in the United States // Oil Shale. 2006. Vol. 23, No. 2. P. 97–98.

  2. Kök, M. V. Oil shale resources in Turkey // Oil Shale. 2006. Vol. 23, No. 3. P. 209–210.

  3. Sukardjo, Hadiyanto. Indonesian oil shale prospects and resources as an alternative energy // 26th Oil Shale Symposium, Golden, Colorado, 16 and 17 October 2006.

  4. Qian, J. L. China’s oil business is going ahead // Oil Shale. 2006. Vol. 23, No. 4. P. 295.

  5. Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil Shale in China. – Beijing: Petroleum Industry Press, 2004. P. 98–167 [In Chinese with English abstract].

  6. Qian, J., Wang, S. L. Oil shale development in China // Oil Shale. 2003. Vol. 20, No. 3S. P. 356–359.

  7. Wang, P. J., Wang, D. P., Chang, P., Li, H. Metallic biomineralization of continental black shales // Journal of Changchun University of Earth Sciences. 1996. Vol. 26, No. 1. P. 47–53 [in Chinese with English abstract].

  8. Fu, X. G., Wang, J., Qu, W. J., Duan, T. Z., Du, A. D., Wang, Z. J., Liu, H. Re-Os (ICP-MS) dating of marine oil shale in the Qiangtang basin, northern Tibet, China // Oil Shale. 2008. Vol. 25, No. 1. P. 47–55.

  9. Fu, X. G., Wang, J., Zeng, Y. H., Li, Z. X., Wang, Z. J. Geochemical and palyno­logical investigation of the Shengli River marine oil shale (China): Implications for paleoenvironment and paleoclimate // Int. J. Coal Geol. 2009. Vol. 78, No. 3. P. 217–224.
doi:10.1016/j.coal.2009.02.001

10. Fu, X. G., Wang, J., Tan, F. W., Zeng, Y. H. Sedimentological investigations of the Shengli River-Changshe Mountain oil shale (China): relationships with oil shale formation // Oil Shale. 2009. Vol. 26, No. 3. P. 373–381.

11. Wang, W. F., Qin, Y., Sang, S. X., Zhu, Y. M., Wang, C. Y., Weiss, D. J. Geo­chemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China // Int. J. Coal Geol. 2008. Vol. 76, No. 4. P. 309–317.
doi:10.1016/j.coal.2008.08.012

12. Rantitsch, G., Melcher, F., Meisel, Th., Rainer, Th. Rare earth, major and trace elements in Jurassic manganese shales of the Northern Calcaeous Alps: hydro­thermal versus hydrogenous origin of stratiform manganese deposits // Miner. Petrol. 2003. Vol. 77, No. 1–2. P. 109–127.

13. Dai, S. F., Li, D., Chou, C. L., Zhao, L., Zhang, Y., Ren, D. Y., Ma, Y. W., Sun, Y. Y. Mineralogy and geochemistry of boehmite-rich coals: New insights from the Haerwusu Surface Mine, Jungar Coalfield, Inner Mongolia, China // Int. J. Coal Geol. 2008. Vol. 74, No. 3-4. P. 185–202.
doi:10.1016/j.coal.2008.01.001

14. Qi, H. W., Hu, R. Z., Zhang, Q. Concentration and distribution of trace elements in lignite from the Shengli Coalfield, Inner Mongolia, China: Implications on origin of the associated Wulantuga Germanium Deposit // Int. J. Coal Geol. 2007. Vol. 71, No. 2–3. P. 129152.
doi:10.1016/j.coal.2006.08.005

15. Condie, K. C. Another look at rare earth elements in shales // Geochim. Cosmochim. Ac. 1991. Vol. 55, No. 9. P. 2527–2531.
doi:10.1016/0016-7037(91)90370-K

16. Ketris, M. P., Yudovich, Y. E. Estimations of clarkes for carbonaceous bio­lithes: World averages for trace element contents in black shales and coals // Int. J. Coal Geol. 2009. Vol. 78, No. 2. P. 135148.
doi:10.1016/j.coal.2009.01.002

17. Wang, J., Tan, F. W., Li, Y. L., Li, Y. T., Chen, M., Wang, C. S., Guo, Z. J., Wang, X. L., Du, B. W., Zhu, Z. F. The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai-Xizang Plateau. – Beijing: Geo­logical Publishing House, 2004. P. 3488 [in Chinese with English abstract].

18. Yi, H. S., Deng. B., Xiong, S. P. Lower Jurassic oil shale deposition from northern Tibet: chemostratigraphic signals and the early Toarcian anoxic event // 18th HKT Workshop Abstracts. 2003. P. 129–130.

19. Kimura, T. Relationships between inorganic elements and minerals in coals from the Ashibetsu district, Ishikari coal field, Japan // Fuel Process. Technol. 1998. Vol. 56, No. 1–2. P. 119.
doi:10.1016/S0378-3820(97)00089-1

20. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. 2008. Proximate analysis of coal, GB/T212-2008. – Beijing: Standard Press of China, 2008. P. 4 [in Chinese].

21. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of total sulfur in coal, GB/T214-2007. – Beijing: Standard Press of China, 2007. P. 4–8 [in Chinese].

22. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of forms of sufer in coal, GB/T215-2003. – Beijing: Standard Press of China, 2003. P. 1–5 [in Chinese].

23. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Determination of total organic carbon in sedi­mentary rock, GB/T19145-2003. – Beijing: Standard Press of China, 2003. P. 2–4 [in Chinese].

24. Mukhopadhyay, P. K., Goodarzi, F., Crandlemire, A. L., Gillis, K. S., MacNeil, D. J., Smith, W. D. Comparison of coal composition and elemental distribution in selected seams of the Sydney and Stellarton Basins, Nova Scotia, Eastern Canada // Int. J. Coal Geol. 1998. Vol. 37, No. 1–2. P. 113141.
doi:10.1016/S0166-5162(98)00020-2

25. Finkelman, R. B. Trace and minor elements in coal // Organic Geochemistry / Engel, M. H., Macko, S. A. (Eds.). New York, NY: Plenum Press, 1993. P. 593–607.

26. Haskin, L. A., Haskin, M. A., Frey, F. A., Wilderman, T. R. Relative and absolute terrestrial abundances of the rare earths // Origin and distribution of the elements / Ahrens, L. H. (ed.). Oxford: Pergamon, 1968. P. 889–911.

27. Gromet, L. P., Haskin, L. A., Korotev, R. L., Dymek, R. F. The “North American shale composite”: Its compilation, major and trace element characteristics // Geochim. Cosmochim Ac. 1984. Vol. 48, No. 12. P. 24692482.
doi:10.1016/0016-7037(84)90298-9

28. Taylor, S. R., Mcleman, S. M. The Continental Crust: Its Composition and Evolution. – Oxford: Blackwell, 1985. P. 57–72.

29. Eskenazy, G. M. Rare earth elements in a sampled coal from the Pirin deposit, Bulgaria // Int. J. Coal Geol. 1987. Vol. 7, No. 3. P. 301314.
doi:10.1016/0166-5162(87)90041-3

30. Schatzel, S. J., Stewart, B. W. Rare earth element sources and modification in the Lower Kittanning coal bed, Pennsylvania: implications for the origin of coal mineral matter and rare earth element exposure in underground mines // Int. J. Coal Geol. 2003. Vol. 54, No. 3–4. P. 223251.
doi:10.1016/S0166-5162(03)00038-7

31. Chatziapostolou, A., Kalaitzidis, S., Papazisimou, S., Christanis, K., Vagias, D. Mode of occurrence of trace elements in the Pellana lignite (SE Peloponnese, Greece) // Int. J. Coal Geol. 2006. Vol. 65, No. 1–2. P. 316.
doi:10.1016/j.coal.2005.04.005

32. Webb, G. E., Kamber, B. S. Rare earth elements in Holocene reefal micro­bialites: a new shallow seawater proxy // Geochim. Cosmochim. Ac. 2000. Vol. 64, No. 9. P. 15571565.
doi:10.1016/S0016-7037(99)00400-7

33. Brumsack, H.-J. The trace metal content of recent organic carbon-rich sedi­ments: Implications for Cretaceous black shale formation // Palaeogeogr. Palaeocl. 2006. Vol. 232, No. 2–4. P. 344–361.
doi:10.1016/j.palaeo.2005.05.011
Back to Issue