ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

ELECTRON MICROSCOPY ANALYSIS OF SEMI-COKE FROM THE MICROWAVE PYROLYSIS OF OIL SHALE WITH ITS FRACTAL DESCRIPTION; pp. 209–228

Full article in PDF format | doi: 10.3176/oil.2010.3.03

Authors
WANG QING, LIU TONG, LIU HONGPENG, QIN HONG, LI SHAOHUA

Abstract
This paper discusses the potential use of microwave technology as an energy-efficient alternative to current heating technologies employed for treatment of Jilin Huadian oil shale and analyzes the surface pore structure of its semi-coke particle by a scanning electron microscope (SEM). The fractal theory was introduced into Scanning Electron Microscopy image analysis, and the particle surface fractal dimension (D) was used to describe quantitatively the surface character of oil shale/semi-coke particles. The SEM image was trans­formed into fractal one and the fractal dimensions were figured out with the box-counting approach. According to adsorption isotherm data, FHH model approach was also used to calculate the surface fractal dimension. Then, the box-counting approach was corroborated by using FHH model approach. It means that the fractal pore structure characteristics of samples could be described by a box-counting approach. Meanwhile, the results also showed that the microwavepyrolysis technology had a notable impact on the pore structure of samples.
References

  1. Revue Internationale Europe Outremer. 1982; 627: 14.

  2. Qian, J. L,. Wang, J. Q., Li, S. Y. Oil shale development in China // Oil Shale. 2003. Vol. 20, No. 3S. P. 356–359.

  3. Williams, P. T., Ahmad  N. Investigation of oil-shale pyrolysis processing condi­tion using thermogravimetric analysis // Appl. Energ. 2000. Vol. 66, No. 2. P. 113–133.

  4. Qing, W., Baizhong, S., Xiahua, W., Jingru, B., Jian, S. Influence of retorting tem­perature on combustion characteristics and kinetic parameters of oil shale semicoke // Oil Shale. 2006.Vol. 23, No. 4. P. 328–339.

  5. Ellington, R. T. Method of Retorting Oil Shale in Situ. US Patent 3586377 (1971).

  6. Qing, W., Baizhong, S., Xiahua, W., Jingru, B., Jian, S. Study on combustion char­acteristics of mixtures of Huadian oil shale and semicoke // Oil Shale. 2007. Vol. 24, No. 2. P. 135–145.

  7. Appleton, T. J., Colder, R. I., Kingman, S. W., Lowndes, I. S., Read, A. G. Micro­wave technology for energy-efficient processing of waste // Appl. Energ. 2005. Vol. 81, No. 1. P. 85–113.

  8. Meredith, R. J. Engineers' Handbook of Industrial Microwave Heating. - London: Institution of Electrical Engineers, 1998.

  9. Ben Chanaa, M., Lallemant, M., Mokhlisse, A. Pyrolysis of Timahdit, Morocco, oil shales under microwave field // Fuel. 1994. Vol. 73, No. 10. P. 1643–1649.

10. Bradhurst, D. H., Worner, H. K. Evaluation of oil produced from the microwave retorting of Australian shales // Fuel. 1996. Vol. 75, No. 3. P. 285–288.

11. El Harfi, K., Mokhlisse, A., Chanaa, M. B., Outzourhit, A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation // Fuel. 2000. Vol. 79, No. 7. P. 733–742.

12. Dominguez, A., Menendez, J. A., Fernandez, Y., Pis, J. J., Nabais, J. M. V., Carrott, P. J. M., Carrott, M. M. L R. Conventional and microwave induced pyrolysis of coffee hulls for the production of a hydrogen rich fuel gas // J. Anal. Appl. Pyrol. 2007. Vol. 79, No. 1–2. P. 128–135.
doi:10.1016/j.jaap.2006.08.003

13. Sun, B. Z., Wang, Q., Li, S. H, Wang, H. G. Analysis of specific area and porous structure of oil shale and semi-coke // Journal of Power Engineering. 2008. Vol. 28, No. 1. P. 163–167 [in Chinese].

14. Cranston, R. W., Inkley, F. A. The determination of pore structures from nitrogen adsorption isotherms // Advances in Catalysis. – New York: Academic Press Inc, 1957. Vol. 9. P. 143–154.

15. Tisot, P. R. Properties of Green River oil shale determined from nitrogen adsorption and desorption isotherms // J. Chem. Eng. Data. 1962. Vol. 7, No. 3. P. 405–410.
doi:10.1021/je60014a029

16. Slettevold, C. A., Biermann, A. H., Burnham, A. K. LLNL Report UCRL-52619. – Livermore, CA, 1978.

17. Schrodt, J. T., Comer, A. C. Surface Area and Pore Volume Distributions of Eastern US Oil Shales // European Federation of Chemical Engineers, Con­ference on Energy, London, UK, 1982, P. A/51–A/56.

18. Nakagawa, T., Komaki, I., Sakawa, M., Nishikawa, K. Small angle X-ray scatter­ing study on change of fractal property of Witbank coal with heat treat­ment // Fuel. 2000. Vol. 79, No. 11. P. 1341–1346.

19. Sastry, P. U., Sen, D., Mazumder, S., Chandrasekaran, K. S. Structural varia­tions in lignite coal: a small angle X-ray scattering investigation // Solid State Commun. 2000. Vol. 114, No. 6. P. 329–333.
doi:10.1016/S0038-1098(00)00060-0

20. He, R., Xu, X., Chen, C., Fan, H., Zhang, B. Evolution of pore fractal dimensions for burning porous chars // Fuel. 1998. Vol. 77, No. 12. P. 1291–1295.

21. Diduszko, R., Swiatkowski, A., Trznadel, B. J. On surface of micropores and fractal dimension of activated carbon determined on the basis of adsorption and SAXS investigations // Carbon. 2000. Vol. 38, No. 8. P. 1153–1162.

22. Saito, K., Komaki, I., Hasegawa, K. I., Tsuno, H. In-situ variable-temperature single-point NMR imaging study of coals // Fuel. 2000. Vol. 79, No. 3–4. P. 405–416.

23. Qing, W., Baizhong, S., Aijuan, H., Jingru, B., Shaohua, L. Pyrolysis charac­teristics of Huadian oil shales // Oil Shale. 2007. Vol. 24, No. 2. P. 147–157.

24. Wang Qing, Huan Xiankun, Liu Hongpeng, Sun Baizhong, Jia Chunxia. Micro­wave induced pyrolysis of Huadian oil shale // Journal of Chemical Industry and Engineering. 2008. Vol. 59, No. 5. P. 1288–1292 [in Chinese].

25. Falconer, K. Fractal Geometry: Mathematical Foundations and Applications. New York: Wiley, 1990.

26. Youzhong, R., Jian, F., Zhibo, C., Yuanquan, C. Electron microscopic analyses of char structure and its fractal description // Combust. Sci. Technol. 1996. Vol. 2, No. 1. P. 9–14.

27. Bisoi, A. K., Mishra, J. On calculation of fractal dimension of images // Pattern. Recogn. Lett. 2001. Vol. 22, No. 6–7. P. 631–637.
doi:10.1016/S0167-8655(00)00132-X

28. Mandelbrot, B. B. The Fractal Geometry of Nature. – San Francisco: Freeman, 1982.

29. Chaudhuri, B. B., Sarkar, N. Texture segmentation using fractal dimension // IEEE T. Pattern. Anal. 1995. Vol. 17, No. 1. P. 72–77.

30. Song, H., Xiang, J., Sun, L., Xu, M., Qiu, J., Fu, P. Characterization of char from rapid pyrolysis of rice husk // Fuel Process. Technol. 2008. Vol. 89, No. 11. P. 1096–1105.
doi:10.1016/j.fuproc.2008.05.001

31. Bilali, L., Benchanaa, M., El harfi, K., Mokhlisse, A., Outzourhit, A. A detailed study of the microwave pyrolysis of the Moroccan (Youssoufia) rock phosphate // J. Anal. Appl. Pyrol. 2005. Vol. 73, No. 1. P. 1–15.
doi:10.1016/j.jaap.2004.08.004

32. Avnir, D, Pfeifer, P. Fractal dimension in chemistry: An intensive characteristic of surface irregularity // Nouv. J. Chim. 1983. Vol. 7, No. 2. P. 71–72.
Back to Issue