eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2010.3.07

Helena Lind
During the next decade changes are expected in the western area of the active part of the Estonia oil shale deposit since Ojamaa mine started to dewater the oil shale layer and environmental impact assessment is in the process of estimating the influence of dewatering on the site of Uus-Kiviõli mine. Aidu open cast is planned to close down in 2013 as the resources of oil shale indicated in the mine permission are ending. Closing of Viru mine in 2015 has been discussed. As the oil shale resources at Aidu and Viru area end, the mine sites will be closed and flooded. Therefore the groundwater table will increase in closed sites and will decrease in prospective areas. To estimate and visualise the situation, computational modeling of groundwater flow has been applied in most cases to estimate the future situation. The current analysis describes the process of groundwater modelling as well as offers possibilities of estimating the accuracy of the model and of the model calibration process. Water inflow rate into Estonia mine has been analysed.

  1. Reinsalu, E., Valgma, I., Lind, H., Sokman, K. Technogenic water in closed oil shale mines // Oil Shale. 2006. Vol. 23, No. 1. P. 15–28.

  2. Wolkersdorfer, C. Water Management at Abandoned Flooded Underground Mines: Fundamentals, Tracer Tests, Modelling, Water Treatment. – Berlin/ Heidelberg: Springer, 2002.

  3. Wolkersdorfer, C., Bowell, R. (eds.). Contemporary reviews of mine water studies in Europe. Part 2 // Mine Water Environ. 2005. Vol. 24, No. 1. P. 2–37.

  4. Wu, Q., Zhou, W. F. Prediction of inflow from overlying aquifers into coal­mines: a case study in Jinggezhuang Coalmine, Kailuan, China // Environ. Geol. 2008. Vol. 55, No. 4. P. 775–780.

  5. Herrmann, F., Jahnke, C., Jenn, F., Kunkel, R., Voigt, H-J., Voigt, J., Wend­land, F. Groundwater recharge rates for regional groundwater modelling: a case study using GROWA in the Lower Rhine lignite mining area, Germany // Hydrogeol. J. 2009. Vol. 17,  No. 8. P. 2049–2060.

  6. Peeters, L., Haerens, B., Van der Sluys, J., Dassargues, A. Modelling seasonal variations in nitrate and sulphate concentrations in a vulnerable alluvial aquifer // Environ. Geol. 2004. Vol. 46, No. 6–7. P. 951–961.

  7. Erg, K. Changes in groundwater sulphate content in Estonian oil shale mining area // Oil Shale. 2005. Vol. 22, No. 3. P. 275–290.

  8. BHP Billiton, Daunia Coal Mine Project – Supplementrary Environmental Impact Statement. 2009DauniaCoalAppendixC1ModellingMethodology.pdf. 30.04.2010.

  9. Younger, P., Wolkersdorfer, C. Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management // Mine Water Environ. 2004. Vol. 23, No. S1. P. S2-S80.

10. Adams, R., Younger, P. L. A strategy for modeling ground water rebound in abandoned deep mine systems // Ground Water. 2001. Vol. 39, No. 2. P. 249–261.

11. Rapantova, N., Arnost, G., Vojtek, D., Halir, J., Michalek, B. Ground water flow modelling applications in mining hydrogeology // Mine Water Environ. 2007. Vol. 26, No. 4. P. 264–270.

12. Younger, P. L., Banwart, S. A., Hedin, R. S. Mine Water. Hydrology, Pollution, Remediation. – Dordrecht, The Netherlands: Kluwer Academic Publishers, 2002.

13. Fitts, C. R. Groundwater Science. – Academic Press. Elsevier Science Ltd., 2002. P. 179–278.

14. Waterloo Hydrogeologic, Inc. Visual ModFlow version 4.1. User’s Manual. – Waterloo Hydrogeologic Inc., 2005.

15. Savitski, L., Savva, V. Predictions of Hydrogeological Changes due to Opening of Uus-Kiviõli Underground Mine and Closure of Aidu Open Cast. – Estonian Geology Fund, 2009 [in Estonian].

16. Savitski, L., Savva, V. Predictions of Hydrogeological Changes at Estonian Oil Shale Mining Area. Phase I-III: Closure of Kohtla, Aidu Open Cast and Ahtme Underground Mines. Reports No 6867, 7005 and 7278. – Estonian Geology Fund, 2001 [in Estonian].

17. Valgma, I., Torn, H., Erg, K. The impact of infiltration dam on the groundwater regime in the Kurtna landscape reserve area // Oil Shale. 2006. Vol. 23, No. 1. P. 3–14.

18. Tamm, I. Modelling Report of Water Level in Kurtna Lakes. Advancing of Viivikonna Section. – Tallinn: Maves AS, 2004.

19. Valgma, I. Geographical Information System for Oil Shale Mining – MGIS (Doctoral Thesis). – Tallinn: Tallinn Technical University Press, 2002.

20. Estonian Geological Base Map. – Estonian Land Board, 2009.

21. Weight, W. D., Sonderegger, J. L. Manual of Applied Field Hydrogeology. – New York: McGraw-Hill, 2000.

22. Lind, H., Robam, K., Valgma, I., Sokman, K. Developing computational ground­water monitoring and management system for Estonian oil shale deposit // Geoenvironment & Geotechnics (GEOENV08) / Agioutantis, Z., Komnitsas, K. (eds). – Heliotopos Conferences, 2008. P. 137–140.

23. Perens, R., Andresmaa, E., Antonov, V., Roll, G., Sults, Ü. Groundwater Manage­ment in the Northern Peipsi-Narva River Basin. Background report. – Tartu, 2001.

24. Erg, K., Karu, V., Lind, H., Torn, H. Mine pool water and energy production // In: 4th International Symposium “Topical Problems of Education in the Field of Electrical and Power Engineering”: Doctoral School of Energy and Geo­technology, Kuressaare, 15-20.01.2007 / Lahtmets, R. (ed). – Tallinn: Tallinn University of Technology Faculty of Power Engineering, 2007. P. 108–111.

25. Wolkersdorfer, C., Feldtner, N., Trebušak, I. Mine water tracing – a tool for assessing flow paths in flooded underground mines // Mine Water Environ. 2002. Vol. 21, No. 1. P. 7–14.

26. Perens, R., Savitski, L. Influence of oil shale mining on ground­water // Environ­ment Technics. 2008. No. 3. P. 44 [in Estonian].

27. Perens, R., Vallner, L. Hydrogeology. Water-Bearing Formation // Geology and Mineral Resources of Estonia / Raukas, A., Teedumäe, A. (eds). – Tallinn: Estonian Academy Publishers, 1997. P. 137–145.
Back to Issue