eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2010.2.04


In this research, semi-coke samples were produced in a modified microwave oven at different final temperatures at a constant incident microwave power (550 W). The pore structure of raw oil shale (OS) and semi-coke samples was measured by the method of low-temperature adsorption of nitrogen. The obtained adsorption/desorption isotherms of these samples were similar and could be categorized as type II isotherms in the IUPAC classification, and all hysteresis loops produced by OS and all semi-coke samples are very similar to H3 hysteresis loops. Specific surface area was calculated based on BET equa­tion, and pore size distribution was calculated by BJH method. The analysis results showed that the final temperature has a great influence on specific surface area, specific pore volume and the development of mesopores. As compared with conventional pyrolysis, pore size distribution curves have two visible peaks near 2 nm and 4 nm.

Khraisha, Y. H. Batch combustion of oil shale particles in a fluidized bed reactor // Fuel Process. Technol. 2005. Vol. 86, No. 6. P. 691–706.

Qian, J. L., Wang, J. Q., Li, S. Y. Oil shale development in China // Oil Shale. 2003. Vol. 20, No. 3S. P. 356–359.

Russel, P. L. Oil Shales of the World: Their Origin, Occurrence, and Exploitation. – Oxford: Pergamon Press, 1990.

Wang, Q., Hao, Z. J., Sun, J., Qin, Y. K. Operating performance analysis of an oil shale fired circulating fluidized bed boiler of the highest capacity currently in operation in China // Journal of Engineering for Thermal Energy & Power. 2001. Vol. 16, No. 5. P. 513–516 [in Chinese].

Holopainen, H. Experience of oil shale combustion in Ahlstrom pyroflow CFB-boiler // Oil Shale. 1991. Vol. 8, No. 3. P. 194–209.

Qian, J. L., Wang, J. Q., Li, S. Y. World’s oil shale available retorting technologies and the forecast of shale oil production // Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference. Vancouver, BC, Canada, July 6–11, 2008.

Chanaa, M. B., Lallemant, M., Mokhlisse, A. Pyrolysis of Timahdit, Morocco, oil shales under microwave field // Fuel. 1994. Vol. 73, No. 10. P. 1643–1649.

Thostenson, E. T., Chou, T. W. Microwave processing: fundamentals and applica­tions // Compos. Part A-Appl. S. 1999. Vol. 30, No. 9. P. 1055–1071.

Bradhurst, D. H,. Worner, H. K. Evaluation of oil produced from the microwave retorting of Australian shales // Fuel. 1996. Vol. 75, No. 3. P. 285–288.

El Harfi, K., Mokhlisse, A., Chanâa, M. B., Outzourhit, A. Pyrolysis of the Moroccan (Tarfaya) oil shales under microwave irradiation // Fuel. 2000. Vol. 79, No. 7. P. 733–742.

Wang, Q., Huan, X. K., Liu, H. P., Sun, B. Z., Jia, C. X. Microwave induced pyrolysis of Huadian oil shale // Journal of Chemical Industry and Engineering (China). 2008. Vol. 59, No. 5. P. 1288–1293 [in Chinese].

Sun, B. Z., Wang, Q., Li, S. H., Wang, H. G. Analysis of specific area and porous structure of oil shale and semi-coke // Journal of Power Engineering. 2008. Vol. 28, No. 1. P. 163–167 [in Chinese].

Tisot, P. R. Properties of Green River oil shale determined from nitrogen adsorption and desorption Isotherms // J. Chem. Eng. Data. 1962. Vol. 7, No. 3. P. 405–410.

Schrodt, J. T., Ocampo, A. Variations in the pore structure of oil shales during retorting and combustion // Fuel. 1984. Vol. 63, No. 11. P. 1523–1527.

Wang, Q., Huan, X. K., Kou, Z., Liu, H. P., Sun, B. Z. Temperature rising charac­teristic of oil shale and semi-coke under the microwave field // Journal of Microwave. 2009. Vol. 25, No. 1. P. 92–96 [in Chinese].

Pan, Z. M. Temperature measurement in the application of microwave heating // Journal of Shenzhen University (Science & Engineer). 2002. Vol. 19, No. 2. P. 81–84 [in Chinese].

Shi, Q. X., He, W., Han, L. Q. Contacting temperature measuring instrument special for microwave oven [P]. CN, 1724943A. 25, Jan, 2006.

Brunauer, S., Emmett, P. H., Teller, E. Adsorption of gases in multimolecular layers // J. Am. Chem. Soc. 1938. Vol. 60, No. 2. P. 309–319.

Barrett, E. P., Joyner, L. G., Halenda, P. P. The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms // J. Am. Chem. Soc. 1951. Vol. 73, No. 5, P. 373–380.

IUPAC. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity // Pure Appl. Chem. 1985. Vol. 57, No. 4. P. 603–619.

Rouquerol,  F., Rouquerol, J., Sing, K. Adsorption by Powders and Porous Solids. – London: Academic Press, 1999.

Terzyk, A. P., Gauden, P. A., Kowalczyk, P. What kind of pore size distribution is assumed in the Dubinin-Astakhov adsorption isotherm equation? // Carbon. 2002. Vol. 40, No. 15. P. 2879–2886.

Hu, S., Xiang, J., Sun, L. S., Xu, M. H., Qiu, J. R., Fu, P. Characterization of char from rapid pyrolysis of rice husk // Fuel Process. Technol. 2008. Vol. 89, No. 11. P. 1096–1105.

Butcher, D. A., Rowson, N. A. Microwave pretreatment of coal prior to magnetic separation // Magn. Electr. Sep. 1995. Vol. 6, No. 2. P. 87–97.

Qian, J. L., Yin, L. Oil Shale – Petroleum Alternative. – Beijing: China Sinopec-Press, 2008 [in Chinese].

Back to Issue