ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

SOLVENT SWELLING OF DICTYONEMA OIL SHALE; pp. 26–36

Full article in PDF format | doi: 10.3176/oil.2010.1.04

Authors
K. KILK, N. SAVEST, J. HRULJOVA, E. TEARO, S. KAMENEV, V. OJA

Abstract
The present work investigates volumetric swelling of Estonian Dictyonema oil shale, as a representative of black shales of the Baltoscandian basin, in 22 solvents. This study shows that kerogen of Dictyonema oil shale is charac­terized by a low degree of swelling indicating a highly cross-linked structure. The relatively high swellability in high Guttmann’s electron donor number solvents indicates the importance of non-covalent cross-links, such as hydrogen bonding, in swelling process and raises concern regarding the use of regular solution-based approaches. Despite this, the solubility para­meter, a funda­mental thermodynamic property, was tentatively determined from swelling data.
References

  1. Lutch, L. M., Peppas, N. A. Crosslinked macromolecular structures in bituminous coals: Theorethical and experimental considerations // AIP Conf. Proc. 1981. Vol. 70, No. 1. P. 28–48.

  2. Otake, Y., Suuberg, E. M. Temperature dependence of solvent swelling and diffusion processes in coals // Energ. Fuel. 1997. Vol. 11, No. 6. P. 1155–1164.
doi:10.1021/ef970020v

  3. Savest, N., Oja, V., Kaevand, T., Lille, U. // Fuel. 2007. Vol. 86, No. 1–2. P. 17–21.

  4. Ballice, L. Solvent swelling studies of Göynük (Kerogen Type-I) and Beypazari oil shales (Kerogen Type-II) // Fuel. 2003. Vol. 82, No. 11. P. 1317–1321.
doi:10.1016/S0016-2361(03)00026-7

  5. Larsen, J. W., Li, S. An initial comparison of the interactions of Type I and III kerogens with organic liquids // Org. Geochem. 1997. Vol. 26, No. 5/6. P. 305–309.
doi:10.1016/S0146-6380(97)00016-8

  6. Larsen, J. W., Li, S. Solvent swelling studies of Green River kerogen // Energ. Fuel. 1994. Vol. 8, No. 4. P. 932–936.
doi:10.1021/ef00046a017

  7. Solomon, P. R., Serio, M. A., Suuberg, E. M. Coal pyrolysis: experiments, kinetic rates and mechanisms // Prog. Energ. Combust. 1992. Vol. 18. No. 2. P. 133–220.
doi:10.1016/0360-1285(92)90021-R

  8. Solomon, P. R., Hamblen, D. G., Carangelo, R. M., Serio, M. A., Desh­pande, G. V. General model of coal devolatilization // Energ. Fuel. 1988. Vol. 2, No. 4. P. 405–422.
doi:10.1021/ef00010a006

  9. Fomina, A. S. Chemical Composition of Baltic Oil Shale Kerogen // United Nations Symposium on the Development and Utilization of Oil Shale Resources. – Tallinn: Academy of Science of Estonian SSR, 1968.

10. Koel, M., Ljovin, S., Hollis, K., Rubin, J. Using neoteric solvents in oil shale studies // Pure Appl. Chem. 2001. Vol. 73, No. 1. P. 153–159.
doi:10.1351/pac200173010153

11. Oja, V. Is it time to improve the status of oil shale science? // Oil Shale. 2007. Vol. 24, No. 2. P. 97–99.

12. Elenurm, A., Oja, V., Tali, E., Tearo, E., Yanchilin, A. Thermal processing of dictyonema argillite and kukersite oil shale: transformation and distribution of sulfur compounds in pilot-scale Galoter process // Oil Shale. 2008. Vol. 25, No. 3. P. 328–334.

13. Loog, A., Kurvits, T., Aruväli, J., Petersell, V. Garin size analysis and mineralogy of the Tremadocian Dictyonema shale in Estonia // Oil Shale. 2001. Vol. 18, No. 4. P. 281–297.

14. Graber, E. R., Mingelgrin, U. Clay swelling and regular solution theory // Environ. Sci. Technol. 1994. Vol. 28, No. 13. P. 2360–2365.
doi:10.1021/es00062a021

15. Mesci, N., Senelet, A., Togrul, T., Olcay, A. Effect of acid treatment on volu­metric swelling ratios of coals // Turk. J. Chem. 2001. Vol. 25, No. 4. P. 397–403.

16. Hansen, C. M. Hansen Solubility Parameters: A User’s Handbook. – Boca Raton, Florida: CRC Press, 2000.

17. Karger, B. L., Snyder, L. R., Eon, C. An expanded solubility parameter treat­ment for classification and use of chromatographic solvents and adsorbents. Parameters for dispersion, dipole and hydrogen bonding interactions // J. Chromatogr. 1976. Vol. 125, No. 1. P. 71–88.
doi:10.1016/S0021-9673(00)93812-3

18. Terada, M., Marchessault, R. H. Determination of solubility parameters for poly(3-hydroxyalkanoates) // Int. J. Biol. Macromol. 1999. Vol. 25, No. 1–3. P. 207–215.
doi:10.1016/S0141-8130(99)00036-7

19. Behbehani, G. R., Hamedi, M., Rajabi, F. H. The solvation of urea, tetra­methlyurea, TMU, in some organic solvents // Int. J. Vibr. Spec. 2001. Vol. 5, No. 6. [http://www.ijvs.com/volume5/edition6/section3.html].

20. Malavolta, L., Oliveira, E., Cilli, E. M., Nakaie, C. R. Solvation of polymers as model for solvent effect investigation: proposition of a novel polarity scale // Tetrahedron. 2002. Vol. 58, No. 22. P. 4383–4394.

21. Okiongbo, K. S., Aplin, A. C., Larter, S. R. Changes in Type II kerogen density as a function of maturity: evidence from the Kimmeridge clay formation // Energ. Fuel. 2005. Vol. 19, No. 6. P. 2495–2499.
doi:10.1021/ef050194+

22. Senftle, J. T., Yordy, K. L., Barron, L. S., Crelling, J. C. Whole rock and isolated kerogen characterization studies: observations of sample type preparations upon petrographic and chemical characterization of New Albany Shale // Org. Geochem. 1991. Vol. 17, No. 2. P. 275.
doi:10.1016/0146-6380(91)90089-3

23. Stankiewicz, B. A., Kruge, M. A., Crelling, J. C., Salmon, G. L. Density gradient centrifugation: application to the separation of macerals of type I, II, and III sedimentary organic matter // Energ. Fuel. 1994. Vol. 8, No. 6. P. 1513–1521.
doi:10.1021/ef00048a042

24. Smith, J. W. Relationship of Oil Yield to Oil Shale Industry // United Nations Symposium on the Development and Utilization of Oil Shale Resources. - Tallinn: Academy of Science of Estonian SSR, 1968.

25. Suuberg, E. M., Otake, Y., Langner, M. J., Leung, K. T., Milosavljevic, I. Coal macromolecular network structure analysis: solvent swelling thermodynamics and its implications // Energ. Fuel. 1994. Vol. 8, No. 6. P. 1247–1262.
doi:10.1021/ef00048a013

26. Carbognani, L., Rogel, E. Solvent swelling of petroleum asphaltenes // Energ. Fuel. 2002. Vol. 16, No. 6. P. 1348–1358.
doi:10.1021/ef010299m

27. Larsen, J. W., Flores, C. I. Kerogen chemistry 5. Anhydride formation in, solvent swelling of, and loss of organics on demineralization of Kimmeridge shales // Fuel Process. Technol. 2008. Vol. 89, No. 4. P. 314–321.
doi:10.1016/j.fuproc.2007.11.019

28. Barr-Howell, B. D., Peppas, N. A. Importance of junction functionality in highly cross-linked polymers // Polym. Bull. 1985. Vol. 13, No. 2. P. 91–96.

29. Peppas, N. A., Lucht, L. M. Macromolecular structure of coals. X. Thermo­dynamic interaction parameter for solvents and coal networks // Polym. Bull. 1986. Vol. 16, No. 4. P. 375–379.

30. Farve, E. Swelling of crosslinked polydimethylsiloxane networks by pure solvents: influence of temperature // Eur. Polym. J. 1996. Vol. 32, No. 10. P. 1183–1188.
doi:10.1016/S0014-3057(96)00062-6

31. Gee, G. Interaction between rubber and liquid. IV. Factors governing the absorption of oil by rubber // Trans. Inst. Rubber Ind. 1943. Vol. 18. P. 266–281.

32. Yagi, Y., Inomata, H., Saito, S. Solubility parameters of an N-isopropylacryl­amide gel // Macromolecules. 1992. Vol. 25, No. 11. P. 2997–2998.

33. Oja, V. Characterization of tars from Estonian Kukersite oil shale based on their volatility // J. Anal. Appl. Pyrolysis. 2005. Vol. 74, No. 1–2. P. 55–60.
doi:10.1016/j.jaap.2004.11.032

34. Suuberg, E. M., Sherman, J., Lilly, W. D. Product evolution during rapid pyrolysis of Green River Formation oil shale // Fuel. 1987. Vol. 66, No. 9. P. 1176–1184.
Back to Issue