ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

SYNTHESIS OF CALCIUM-ALUMINO-SILICATE HYDRATES FROM OIL SHALE ASH IN DIFFERENT ALKALINE MEDIA; pp. 47–57

Full article in PDF format | doi: 10.3176/oil.2010.1.06

Authors
J. REINIK, I. HEINMAA, J.-P. MIKKOLA, K. KORDÁS, U. KIRSO

Abstract
Synthesis of Ca-Al-Si-hydrates from oil shale ash using NaOH, KOH and OH-substituted alkaline ionic liquid was carried out. The material from iono­thermal activation was used in carbon dioxide fixation experiments. The influence of the alkaline medium on the activation of oil shale fly ash was studied using physisorption (BETN2), SEM/EDX, FESEM, XRD, and 29Si high-resolution MAS-NMR measurement techniques. In the presence of strong alkali (8 M NaOH) the silicon in the original fly ash was completely converted into Ca-Al-Si-hydrates, mainly into tobermorite and katoite structure during 24-hour treatment at 160 °C. In similar reaction conditions, the hydrothermal activation with KOH converted fly ash into tobermorites only partially. The silicon was not converted into Ca-Al-Si-hydrates by iono­thermal activation with OH-substituted alkaline ionic liquid, tricaprylyl­methyl­ammonium hydroxide, either with conventional or microwave heating. It was found that both the original material and ionothermally activated oil shale ash displayed similar CO2-adsorption capacity.
References

  1. Smadi, M. M., Haddad, R. H. The use of oil ash in Portland cement concrete // Cement Concrete Comp. 2003. Vol. 25, No. 1. P. 43–50.

  2. Shawabkeh, R. A., Al-Harahsheh, A., Hami, M., Khlaifat, A. Conversion of oil shale ash into zeolite for cadmium and lead removal from wastewater // Fuel. 2004. Vol. 83, No. 7–8. P. 981–985.

  3. Gao, G. M., Zou, H. F., Gan, S. C., Liu, Z. J., An, B. C., Xu, J .J., Li, G. H. Pre­paration and properties of silica nanoparticles from oil shale ash // PowderTechnol. 2009. Vol. 191, No. 1–2. P. 47–51.
doi:10.1016/j.powtec.2008.09.006

  4. Shih, W. H., Chang, H. L. Conversion of fly ash into zeolites for ion-exchange applications // Mater. Lett. 1996. Vol. 28, No. 4. P. 263–268.
doi:10.1016/0167-577X(96)00064-X

  5. Querol, X., Plana, F., Alastuey, A., López-Soler, A. Synthesis of Na-zeolites from fly ash // Fuel. 1997. Vol. 76, No. 8. P. 793–799.

  6. Kolay, P. K., Singh, D. N. Characterization of an alkali activated lagoon ash and its application for heavy metal retention // Fuel. 2002. Vol.81, No. 4. P. 483–489.

  7. Grutzeck, M., Kwan, S., DiCola, M. Zeolite formation in alkali-activated cementitious systems // Cement Concrete Res. 2004. Vol. 34, No. 6. P. 949–955.
doi:10.1016/j.cemconres.2003.11.003

  8. Shawabkeh, R. A. Synthesis and characterization of activated carbo-alumino­silicate material from oil shale // Micropor. Mesopor. Mat. 2004. Vol. 75, No. 1–2. P. 107–114.
doi:10.1016/j.micromeso.2004.07.020

  9. Coleman, N. J. Synthesis, structure and ion exchange properties of 11 Å tobermorites from newsprint recycling residue // Mater. Res. Bull. 2005. Vol 40, No. 11. P. 2000–2013.
doi:10.1016/j.materresbull.2005.05.006

10. Komarneni, S., Roy, D. M. New tobermorite cation exchangers // J. Mater. Sci. 1985. Vol. 20, No. 8. P. 2930–2936.
doi:10.1007/BF00553057

11. Huang, X., Jiang, D., Tan, S. Novel hydrothermal synthesis method for tobermorite fibers and investigation on their thermal stability // Mater. Res. Bull. 2002. Vol.37, No. 11. P. 1885–1892.
doi:10.1016/S0025-5408(02)00854-1

12. Reinik, J., Heinmaa, I., Mikkola, J-P., Kirso, U. Synthesis and characterization of calcium–alumino-silicate hydrates from oil shale ash – Towards industrial applications // Fuel. 2008. Vol. 87, No. 10–11. P. 1998–2003.

13. Ranu, B. C., Banerjee, S. Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles // Org. Lett. 2005. Vol. 7, No. 14. P. 3049–3052.
doi:10.1021/ol051004h

14. Lowell, S., Shields, J. E. Powder Surface Area and Porosity. 3rd ed. – London, 1991.

15. Odler, I. The BET-specific surface area of hydrated Portland cement and related materials // Cement Concrete Res. 2003. Vol. 33, No. 12. P. 2049–2056.
doi:10.1016/S0008-8846(03)00225-4

16. Reinik, J., Heinmaa, I., Mikkola, J. P., Kirso, U. Hydrothermal alkaline treat­ment of oil shale ash for synthesis of tobermorites // Fuel. 2007. Vol. 86, No. 5–6. P. 669–676.

17. Mägi, M., Lippmaa, E., Samoson, A., Engelhardt, G., Grimmer, A. R. Solid-state high-resolution silicon-29 chemical shifts in silicates // J. Phys. Chem. 1984. Vol. 88, No. 8. P. 1518–1522.
doi:10.1021/j150652a015

18. Lippmaa, E., Mägi, M., Samoson, A., Engelhardt, G., Grimmer, A. R. Structural studies of silicates by solid-state high-resolution 29Si NMR. J. Am. Chem. Soc. 1980. Vol. 102. P. 4889–4893.
doi:10.1021/ja00535a008

19. Wieker, W., Grimmer, A. R., Winkler, A., Mägi, M., Tarmak, M., Lippmaa, E. Solid-state high-resolution 29Si NMR spectroscopy of synthetic 14 Å, 11 Å and 9 Å tobermorites // Cement Concrete Res. 1982. Vol. 12, No. 3. P. 333–339.
doi:10.1016/0008-8846(82)90081-3

20. Komarneni, S., Roy, R., Roy, D. M., Fyfe, C. A., Kennedy, G. J., Bothner-By, A. A., Dadok, J., Chesnick, A. A. 27Al, 29Si magic angle spinning nuclear magnetic resonance spectroscopy of Al-substituted tobermorites // J. Mater. Sci. 1985. Vol. 20, No. 11. P. 4209–4214.
doi:10.1007/BF00552416

21. Komarneni, S., Tsuji, M. Selective cation exchange in substituted tobermorites // J. Am. Ceram. Soc. 1989. Vol. 72, No. 9. P. 1668–1674.
doi:10.1111/j.1151-2916.1989.tb06301.x

22. Richardson, I. G., Brough, A. R., Brydson, R., Groves, G. W., Dobson, C. M. Location of aluminum in substituted calcium silicate hydrate (C–S–H) gels as determined by 29Si and 27Al NMR and EELS // J. Am. Ceram. Soc. 1993. Vol. 76, No. 9. P. 2285–2288.
doi:10.1111/j.1151-2916.1993.tb07765.x

23. Brough, A. R., Dobson, C. M., Richardson I. G., Groves, G.W. Application of selective 29Si isotopic enrichment to studies of the structure of calcium silicate hydrate (C–S–H) gels // J. Am. Ceram. Soc. 1994. Vol.77, No. 2. P. 593–596.
doi:10.1111/j.1151-2916.1994.tb07034.x

24. Andersen, M. D., Jakobsen, H. J., Skibsted, J. Characterization of white Port­land cement hydration and the C–S–H structure in the presence of sodium aluminate by 27Al and 29Si MAS NMR spectroscopy // Cement Concrete Res. 2004. Vol. 34, No. 5. P. 857–868.
doi:10.1016/j.cemconres.2003.10.009

25. Engelhardt, G., Michel, D. High Resolution Solid State NMR of Silicates and Zeolites. – Chichester, 1987.

26. Uibu, M., Uus, M., Kuusik, R. CO2 mineral sequestration in oil-shale wastes from Estonian power production // J. Envir. Manage. 2009. Vol. 90, No. 2. P. 1253–1260.
doi:10.1016/j.jenvman.2008.07.012

Back to Issue