eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2009.4.04



The main objective of the present study was to investigate pyrolysis of oil shale with polyethylene, in terms of yields and properties of the products obtained. A detailed characterization of gas, oil and char from copyrolysis is presented. Although no synergetic effect on the product yield was observed during the copyrolysis, the addition of polyethylene (PE) to oil shale improved fuel properties of shale oil leading to a decrease in the oxygen content of shale oil. As the ratio of polyethylene increased in the blends, the amount of aliphatic compounds in tars increased while that of polar com­pounds decreased. In addition, the presence of PE in the blend improved the composition of pyrolysis gas leading to an increase in combustible gases. The production of activated carbon from char obtained from oil shale/poly­ethylene (1/1) was also carried out. Although the surface area of activated carbon was smaller than that of obtained from lignocellulosic materials, it had a notable adsorption capacity for Cr(VI) (55.25 mg/g).


  1. Taghiei, M. M., Feng, Z., Huggins, F. E., Huffman, G. P. Coliquefaction of waste plastics with coal // Energy & Fuels. 1994. Vol. 8, No. 6. P. 1228–1232.

  2. Palmer, S. R., Hippo, E. L., Tandan, D., Blankenship, M. Co-conversion of coal/ waste plastic mixtures under various pyrolysis and liquefaction conditions // Prepr. Symps Am. Chem. Soc., Div. Fuel Chem. 1995. Vol. 40, No.1. P. 29–33.

  3. Hayashi, J., Mizuta, H., Kusakabe, K., Morooka, S. Flash copyrolysis of coal and polyolefin // Energy & Fuels. 1994. Vol. 8, No. 6. P. 1353–1359.

  4. Asante, K. O., Stock, L. M., Zabransky, R. F. Pathways for the decomposition of linear paraffinic materials during coal pyrolysis // Fuel. 1989. Vol. 68, No. 5. P. 567–572.

  5. Sınag, A., Sungur, M., Canel, M. Effect of experimental conditions on the yields during the copyrolysis of Mustafa Kemal Pasa (MKP) lignite (Turkey) with low-density polyethylene // Energy & Fuels. 2006. Vol. 20, No. 4. P. 1609–1613.

  6. Gersten, J., Fainberg, V., Garbar, A., Hetsroni, G., Shindler, Y. Utilization of waste polymers through one-stage low-temperature pyrolysis with oil shale // Fuel. 1999. Vol.78, No. 4. P. 987–990.

  7. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales // Fuel. 1999. Vol. 78, No. 6. P. 653–662.

  8. Gersten, J., Fainberg, V., Hetsroni, G., Shindler, Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture // Fuel. 2000. Vol. 79, No. 13. P. 1679–1686.

  9. Ekstrom, A., Fookes, C. J. R., Loeh, H. J., Randall, C. H., Rovere, C., Ellis, J., Crisp, P. T. Chemical and pyrolysis characteristics of two types of oil shale from the Condor deposit in Queensland, Australia // Fuel. 1987. Vol. 66, No. 8. P. 1133–1138.

10. Miknis, F. P., Szeverenyi, N. M., Horn, E. Characterization of the residual carbon in retorted oil shale by solid-state 13C n.m.r. // Fuel 1982. Vol. 61, No. 4. P. 341–345.

11. Akar, A., Ekinci, E. Production of chemicals from oil shales // Fuel. 1995. Vol. 74, No. 8. P. 1113–1117.

12. Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of Beypazari oil shale by pyrolysis // J. Anal. Appl. Pyrol. 2002. Vol. 64, No. 1. P. 29–41.

13. Burnham, A. K., Happe, J. A. On the mechanism of kerogen pyrolysis // Fuel. 1984. Vol. 63, No. 10. P. 1353–1356.

14. Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales // Energy. 1999. Vol. 24, No. 9. P. 761–781.

15. Degirmenci, L., Durusoy, T. Thermal degradation kinetics of Göynük oil shale with polystyrene // J. Therm. Analys. Cal. 2005. Vol. 79, No. 3. P. 663–668.

16. Ballice, L. Classification of volatile products evolved from the temperature-programmed co-pyrolysis of Turkish oil shales with atactic polypropylene (APP) // Energy & Fuels. 2001. Vol. 15, No. 3. P. 659–665.

17. Ballice, L., Yüksel, M., Sağlam, M., Reimert, R., Schulz, H. Classification of volatile products evolved during temperature-programmed co-pyrolysis of Turkish oil shales with low density polyethylene // Fuel. 1998. Vol. 77, No. 13. P. 1431–1441.

18. Tiikma, L., Luik, H., Pryadka, N. Co-pyrolysis of Estonian shales with low-density polyethylene // Oil Shale. 2004. Vol. 21, No. 1. P. 75–85.

19. Aboulkas, A., El harfi, K., Nadifiyine, M., El bouadili, A. Investigation on pyro­lysis of Moroccan oil shale/plastic mixtures by thermogravimetric analysis // Fuel Process. Technol. 2008. Vol. 89, No. 1. P. 1000–1006.

20. Yanik, J., Yüksel, M., Sağlam, M., Olukçu, N., Bartle, K., Frere, B. Charac­teriza­tion of the oil fractions of shale oil obtained by pyrolysis and supercritical water extraction // Fuel. 1995. Vol. 74, No. 1. P. 46–50.

21. Boehm, H. P., Diehl, E., Heck, W., Sappok, R. Identification of functional groups in surface oxides of soot and other carbons // Chem. Int. Ed. 1966. Vol. 3. P. 669–675.

22. Yagmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of Göynük oil shale // J. Therm. Anal. Cal. 2006. Vol. 86, No. 2. P. 479–482.

23. Scholze, B., Meier, D. Characterization of the water-insoluble fraction from pyrolysis oil (pyrolytic lignin). Part I. PY–GC/MS, FTIR, and functional groups // J. Anal. Appl. Pyrol. 2001. Vol. 60, No. 1. P. 41–54.

24. Iniesta, E., Sánchez, F., Garcia, A. N., Marcilla, A. Yields and CO2 reactivity of chars from almond shells obtained by a two heating step carbonisation process. Effect of different chemical pre-treatments and ash content // J. Anal. Appl. Pyrol. 2001. Vol. 58–59. P. 983–994.

25. Cunliffe, A. M., Williams, P. T. Influence of process conditions on the rate of activation of chars derived from pyrolysis of used tires // Energy & Fuels. 1999. Vol. 13, No. 1. P. 166–175.

26. Samaras, P., Diamadopoulos, E., Sakellaropoulos, G. P. The effect of mineral matter and pyrolysis conditions on the gasification of Greek lignite by carbon dioxide // Fuel. 1996. Vol. 75, No. 9. P. 1108–1114.

27. Cazorla-Amorós, D., Ribes-Pérez, D., Román-Martinez, M. C., Linares-Solano, A. Selective porosity development by calcium-catalyzed carbon gasification // Carbon. 1996. Vol. 34, No. 7. P. 869–878.

28. Helleur, R., Popovic, N., Ikura, M., Stanciulescu, M., Liu, D. Characterization and potential applications of pyrolytic char from ablative pyrolysis of used tires // J. Anal. Appl. Pyrol. 2001. Vol. 58–59. P. 813–824.

29. Molina-Sabio, M., Rodriguez-Reinoso, F. Role of chemical activation in the development of carbon porosity // Colloids and Surface A. 2004. Vol. 241, No. 1–3. P. 15-25.

30. Baquero, M. C., Giraldo, L., Moreno, J. C., Suárez-Garcia, F., Martinez-Alonso, A., Tascón, J. M. D. Activated carbons by pyrolysis of coffee bean husks in presence of phosphoric acid // J. Anal. Appl. Pyrol. 2003. Vol. 70, No. 2. P. 779–784.

31. Suárez-Garcia, F., Martinez-Alanso, A., Tascón, J. M. D. Porous texture of activated carbons prepared by phosphoric acid activation of apple pulp // Carbon. 2001. Vol. 39, No. 7. P. 1111–1115.

32. Liu, S. X., Chen, X., Chen, X. Y., Liu, Z. F., Wang, H. L. Activated carbon with excellent chromium(VI) adsorption performance prepared by acid–base surface modification // J. Hazard. Mater. 2007. Vol. 141, No. 1. P. 315–319.

33. Mor, S., Ravindra, K., Bishnoi, N. R. Adsorption of chromium from aqueous solution by activated alumina and activated charcoal // Biores. Technol. 2007. Vol. 98, No. 4. P. 954–957.

34. Pimentel, P. M., Melo, M. A. F., Melo, D. M. A., Assunçao, A. L. C., Hen­rique, D. M., Silva Jr., C. N., González, G. Kinetics and thermodynamics of Cu(II) adsorption on oil shale wastes // Fuel Process. Technol. 2008. Vol. 89, No. 1. P. 62–67.

35. Mohan, D., Singh, K. P., Singh, V. K. Removal of hexavalent chromium from aqueous solution using low-cost activated carbons derived from agricultural waste materials and activated carbon fabric cloth // Ind. Eng. Chem. Res. 2005. Vol. 44, No. 4. P. 1027–1042.

36. Shawabkeh, R. A. Adsorption of chromium ions from aqueous solution by using activated carbo-aluminosilicate material from oil shale // J. Colloid Interface Sci. 2006. Vol. 299, No. 2. P. 530–536.

37. Lazaridis, N. K., Asouhidou, D. D. Kinetics of sorptive removal of chromium(VI) from aqueous solutions by calcined Mg–Al–CO3 hydrotalcite // Water Res. 2003. Vol. 37, No. 12. P. 2875–2882.

38. Okolo, B., Park, C., Keane, M. A. Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media // J. Colloid Interface Sci. 2000. Vol. 226, No. 2. P. 308–317.

39. Podkoscielny, P., Dabrowski, A., Marijuk, O. V. Heterogeneity of active carbons in adsorption of phenol aqueous solutions // Appl. Surf. Sci. 2003. Vol. 205, No. 1-4. P. 297–303.

40. Wu, F., Tseng, R., Juang, R. Pore structure and adsorption performance of the activated carbons prepared from plum kernels // J. Hazard. Mater. 1999. Vol. 69, No. 3. P. 287–302.

41. Gonzalez-Serrano, E., Cordero, T., Rodriguez-Mirasol, J., Cotoruelo, L., Rod­riguez, J. J. Removal of water pollutants with activated carbons prepared from H3PO4 activation of lignin from kraft black liquors // Water Res. 2004. Vol. 38, No. 13. P. 3043–3050.

42. Timur, S., Cem Kantarli, I., Ikizoglu, E., Yanik, J. Preparation of activated carbons from Oreganum stalks by chemical activation // Energy & Fuels. 2006. Vol. 20, No. 6. P. 2636–2641.

43. Delval, F., Crini, G., Vebrel, J. Removal of organic pollutants from aqueous solutions by adsorbents prepared from an agroalimentary by-product // Biores. Technol. 2006. Vol. 97, No. 16. P. 2173–2181.
Back to Issue