eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2009.4.08


The Estonian black argillites formed in Late Cambrian and Early Ordovician (Tremadoc) just after the Cambrian evolutionary explosion, nicely illustrated by the famous Burgess shales. The abundant new Cambrian lifeforms were well able to thrive in anoxic poisonous and strongly radio­active waters, rich in U235. They belong to the extensive formation of the Cambrian-Ordovician black shales which form patches in the latitudinal zone extending from Lake Ladoga in the east to the Jutland Peninsula in the west. In the black mud­stones at Sillamäe the most enriched elements are, in the order of biocapture efficiency, molybdenum, carbon, rhenium, antimony, uranium and arsenic. It appears that not only the most unusual chemical composition, but also the very large compositional variability might depend upon even faraway meta­morphic processes and long-transported allochtons during the Finnmarkian and Caledonian orogenies. The Sillamäe black shale is certainly a better metalliferous ore than the comparable product from Jämtland, Sweden. It is also a very good future fuel, but only nuclear. The carbon content is too low for anything except providing process heat for production of rare metals.

  1. Raukas, A., Teedumäe, A. (eds.). Geology and Mineral Recources of Estonia. – Tallinn: Estonian Academy Publishers, 1997. 436 P.

  2. Gee, D. G., Sturt, B. A. (eds.). The Caledonide Orogen: Scandinavia and Related Areas. – Chichester, UK: John Wiley&Sons, 1985. 1266 P.

  3. Voipio, A. (ed.). The Baltic Sea // Elsevier Oceanography Series. Vol. 30. – Amsterdam: Elsevier, 1981. 405 P.

  4. Kirsimäe, K., Jørgensen, P., Kalm, V. Low-temperature diagenetic illite–smectite in Lower Cambrian clays in North Estonia // Clay Minerals. 1999. Vol. 34, No. 1. P. 151–163.

  5. McKerrow, W. S., Mac Niocaill, C., Dewey, J. F. The Caledonian Orogeny redefined // J. Geol. Soc. London. 2000. Vol. 157, No. 6. P. 1149–1154.

  6. Kaljo, D., Kivimägi, E. Zonal stratigraphy of the Estonian Tremadocian //  Graptolites and Stratigraphy / D. L. Kaljo, T. N. Koren (eds.). Tallinn: Estonian Acad Sci., Inst. Geology, 1976. P. 56–63.

  7. Kivimägi, E. Hitherto unused recources of Estonia // Estonian Nature. 1974. Vol. 17, No. 4. P. 199–202 [in Estonian].

  8. Kallaste, T. Inst. Geology of Tallinn University of Technology, Tallinn, 2009, personal communication.

  9. Lippmaa, E., Maremäe, E. Uranium production from the local Dictyonema shale in North-East Estonia // Oil Shale. 2000. Vol. 17, No. 4. P. 387–394.

10. Puura, V. (ed.). Geology and Mineral Resources of the Rakvere Phosphorite-bearing Area. Inst. of Geology of Acad. Sci. of the Estonian SSR. Geological Survey of the Estonian SSR. – Tallinn: Valgus Publishers, 1987. 211 P. [in Russian]

11. Lide, D. R. CRC Handbook of Chemistry and Physics. – New York: CRC Press, 2001. P. 14–17.

12. Strandell, E. A. (ed.). Uranium production from ore at Ranstad, 40 years of developing uranium extraction from Swedish alum shale. 1998, Ranstad TPM 1534. 536 P. [in Swedish].

13. Andersson, A., Dahlman, B., Gee, D. G., Snäll, S. The Scandinavian Alum Shales. – SGU Ser. No. 56. 1985. 50 P. (CERI-mines, Continental Precious Metals Inc. 2009).

14. Petersell, V. Dictyonema shale // Estonian Combustible Natural Resources and Wastes. 2006. No. 1. P. 8–9 [in Estonian].

15. Kirkland, C. L., Daly, J. S., Chew, D. M., Page, L. M. The Finnmarkian Orogeny Revisited: An isotopic investigation in Eastern Finnmark, Arctic Norway // Tectonophysics. 2008. Vol. 460, No. 1–4. P. 158–177.

16. Roberts, D. The Scandinavian Caledonides: Event chronology, palaeographic settings and likely modern analogues // Tectonophysics. 2003. Vol. 365, No. 1–4. P. 283–299.

17. Bergström, S. M., Löfgren, A., Maletz, J. The GSSP of the second (upper) stage of the Lower Ordovician series: Diabasbrottet at Hunneberg, Province of Västergötland, Southwestern Sweden // Episodes. 2004. Vol. 27, No. 4. P. 265–272.

18. Löfgren, A. M. Reinterpretation of the Lower Ordovician conodont apparatus Paroistodus // Palaeontology. 1997. Vol. 40, Part 4. P. 913–929.

19. Löfgren, A. Conodont faunas with Lenodus variabilis in the Upper Arenigian to Lower Llanvirnian of Sweden // Acta Palaeontol. Pol. 2003. Vol. 48, No. 3. P. 417–436.

20. Stouge, S., Rasmussen, J. A. Upper Ordovician conodonts from Bornholm and possible migration routes in the Palaeotethys Ocean // Bull. Geol. Soc. Denmark. 1996. Vol. 43. P. 54–67.

21. Heinsalu, H., Kaljo, D., Kurvits, T., Viira, V. The stratotype of the Orasoja member (Tremadocian, Northeast of Estonia): lithology, mineralogy and biostratigraphy // Proc. Estonian Acad. Sci. 2003. Vol. 52, No. 3. P. 135–154.

22. Gee, D. B., Juhlin, Ch., Pascal, Ch., Robinson, P. Collisional Orogeny in the Scandinavian Caledonides (COSC): Proposal for an International Continental Scientific Drilling Program, 07. April 2009.

23. Grant, M., Harris, R. K. (eds.). Encyclopedia of Nuclear Magnetic Resonance. Vol. 1–9. – Chichester UK: Wiley, 2002. P. 6184.

24. Bruker Corporation, Almanac 2009, AVANCE III TopSpin.

25. Althausen, M., Maremäe, E., Johannes, E., Lippmaa, E. Weathering of metalli­ferous alum shales // Proc. Estonian Acad. Sci. Chemistry. 1980. Vol. 29, No. 3. P. 165–169.

26. Lupander, K. Preliminary studies on alternative processes for uranium extraction from ore using roasting as a pretreatment method I, II // TPM KFF-4, TPM KFF-5. Ranstad, 1961 [in Swedish].

27. Krenkel. H., Bromley-Challenor, M., Snäll, S. Evaluation of liquid hydro­carbon recovery potential from Swedish alum shale // International Oil Shale Symposium 8–11 June 2009, Tallinn, Estonia.
Back to Issue