ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
OIL SHALE PYROLYSIS IN FIXED-BED RETORT WITH DIFFERENT HEATING RATES; pp. 139–147
PDF | doi: 10.3176/oil.2009.2.06

Authors
O. S. AL-AYED, A. Al-Harahsheh, A. M. KHALEEL, M. AL-HARAHSHEH
Abstract

Production of oil at pyrolysis of Ellajun oil shale was investigated at different heating rates (0.2–2.8; 2.2–5.0 and 7.0–13.0 °C min–1 in a fixed-bed retort. Total weight loss and oil yield were calculated for the temperature range 610–873 K. Total weight loss of oil shale sample increased from 12.5% to 18% with increasing the heating rate from 0.2 to 13 °C min–1, whereas shale oil yield (calculated based on Fisher Assay for Ellajun sample) decreased from 80% to 40%. Sulfur content of produced liquid hydrocarbons decreased from 7.4 wt.% to 6.5 wt.% with increasing heating rate and pyrolysis temperature. Density of the produced shale oil increased from 0.947 to 0.982 g cm–3 with increasing heating rate indicating the formation of heavier compounds.

The rate of shale oil accumulation was monitored by digital mass scales. Higher heating rates resulted in higher rates of accumulation. The rate of oil and water collection passed through a maximum for different heating rates at different pyrolysis temperatures.

References

  1. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing // Oil Shale. 2003. Vol. 20, No. 3S. P. 311–323.

  2. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales // Fuel. 1999. Vol. 78, No. 6. P. 653–662.

  3. Nazzal, J. M. Influences of heating rate on the pyrolysis of Jordan oil shale // J. Anal. Appl. Pyrol. 2002. Vol. 62, No. 2. P. 225–238.
doi:10.1016/S0165-2370(01)00119-X

  4. Dung, N. V. Factors affecting product yields and oil quality during retorting of Stuart oil shale with recycled shale: a screening study // Fuel. 1995. Vol. 74, No. 4. P. 623–627.

  5. Degirmenci, L., Durusoy, T. Effect of heating rate on pyrolysis kinetics of Goynuk oil shale // Energy Sources. 2002. Vol. 24, No. 10. P. 931–936.
doi:10.1080/00908310290086842

  6. Yagmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of Göynük oil shale // J. Therm. Analys. Cal. 2006. Vol. 86, No. 2. P. 479–482.
doi:10.1007/s10973-005-7312-5

  7. Kok, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG // Oil Shale. 2003. Vol. 20, No. 1. P. 57–68.

  8. Olivella, M. A., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals // Oil Shale. 2008. Vol. 25, No. 2. P. 227–245.

  9. Al-Ayed, O. S. Distillation curves under the influence of temperature and particle size of Ellajun oil shale. – Proc. Int. Green Energy Conf. 12–16th June 2005, Waterloo, Ontario, Canada.

10. Hurst, H. J., Levy, J. H., Patterson, J. H. Siderite decomposition in retorting atmospheres // Fuel. 1993. Vol. 72, No. 6. P. 885–890.

11. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales // J. Therm. Analys. Cal. 2007. Vol. 90, No. 3. P. 817–821.
doi:10.1007/s10973-007-8240-3

12. Wang Qing, Sun Baizhong, Hu Aijuan, Bai Jingru, Li Shaohua. Pyrolysis charac­teristics of Huadian oil shales //Oil Shale. 2007. Vol. 24, No. 2. P. 147–157.

13. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales // Appl. Energy. 1999. Vol. 63, No. 4. P. 269–286.
doi:10.1016/S0306-2619(99)00033-1

14. Kaljuvee, T., Edro, E., Kuusik, R. Formation of volatile organic compounds at thermooxidation of solid fossil fuels // Oil Shale. 2007. Vol. 24, No. 2. P. 117–133.

15. Fischer, F., Schrader, H. Urteerbestimmungen mit einem Aluminium­schwelapparat // Angew. Chem. 1920. Bd. 33, Nr. 56. S. 172–175.
doi:10.1002/ange.19200335607

Back to Issue