ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
MINERAL TRAPPING OF CO2 VIA OIL SHALE ASH AQUEOUS CARBONATION: CONTROLLING MECHANISM OF PROCESS RATE AND DEVELOPMENT OF CONTINUOUS-FLOW REACTOR SYSTEM; pp. 40–58
PDF | doi: 10.3176/oil.2009.1.06

Authors
M. UIBU, R. KUUSIK
Abstract
Ash containing considerable amounts of free lime as the most active compo­nent requires stabilization to assure safe landfilling. Using CO2 from flue gases as a neutralizing agent, also the emission of CO2 is diminished. The most extensive effect could be achieved by treating ash-water suspensions with CO2-contain­ing gas. As even minute amounts of extraneous substances present in water influence the extent and rate of lime solubility in water, the behavior of lime as the key component of ash in various conditions was studied and the mechanism of process deceleration was proposed. As the next step, a laboratory-scale continuous-flow reactor system for aqueous carbona­tion of oil shale ash and main considerations for industrial pilot-scale plant design were developed.
References

  1. O'Connor, W. K., Dahlin, D. C., Nilsen, D. N., Rush, G. E., Walters, R. P., Turner, P. C. CO2 storage in solid form: a study of direct mineral carbonation // Proc. 5-th International Conference on Greenhouse Gas technologies, Cairns, Australia, 2000.

  2. Haywood, H. M., Eyre, J. M., Scholes, H. Carbon dioxide sequestration as stable carbonate minerals – environmental barriers // Environ. Geol.2001. Vol. 41. P. 11–16.
doi:10.1007/s002540100372

  3. Teir, S. Reduction of CO2 emissions by producing calcium carbonates from calcium silicates and steelmaking slags. Thesis of Licentiate in Technology, Helsinki University of Technology, Espoo, 2006.

  4. Huijgen, W. J. J., Witkamp, G.-J., Comans, R. N. J. Mineral CO2 sequestration by steel slag carbonation // Environ. Sci. Technol.2005. Vol. 39. P. 9676–9682.
doi:10.1021/es050795f

  5. Kuusik, R., Veskimäe, H., Kaljuvee, T., Parts, O. Carbon dioxide binding in the heterogeneous systems formed by combustion of oil shale. 1. Carbon dioxide binding at oil shale ash deposits // Oil Shale.2001. Vol. 18, No. 2. P. 109–122.

  6. IPCC Special Report on Carbon Dioxide Capture and Storage; Intergovern­mental Panel of Climate Change – Cambridge University Press, Cambridge, United Kingdom and New York, USA, 2005; 443 p.

  7. Lackner, K. S. Carbonate chemistry for sequestrating fossil carbon // Annual Review of Energy and Environment.2002. Vol. 27. P. 193–232.
doi:10.1146/annurev.energy.27.122001.083433

  8. Gerdemann, S. J., O'Connor, W. K., Dahlin, D. C., Penner, L. R., Rush, H. Ex situ aqueous mineral carbonation // Environ. Sci. Technol.2007. Vol. 41, No. 7. P. 2587–2593.
doi:10.1021/es0619253

  9. Huijgen, W. J. J., Comans, R. N. J. Carbonation of steel slag for CO2 sequestra­tion: leaching of products and reaction mechanisms // Environ. Sci. Technol.2006. Vol. 40, No. 8. P. 2790–2796.
doi:10.1021/es052534b

10. Huijgen, W. J. J., Comans, R. N. J. Carbon dioxide sequestration by mineral carbonation: Literature review.– ECN-C-03-016. Energy Research Centre of the Netherlands, 2003.

11. Van Gerven, T., Van Keer, E., Arickx, S., Jaspers, M., Wauters, G., Vandecasteele, C. Carbonation of MSWI-bottom ash to decrease heavy metal leach­ing, in view of recycling // Waste Manage.2005. Vol. 25. P. 291–300.

12. Arickx, S., Van Gerven, T., Vandecasteele, C. Accelerated carbonation for treat­ment of MSWI bottom ash // J. Hazard. Mat.2006. Vol. B137. P. 235–243.
doi:10.1016/j.jhazmat.2006.01.059

13. Stolaroff, J. K., Lowry, G. V., Keith, D. W. Using CaO and MgO-rich waste streams for carbon sequestration // Energy Convers. Manage.2005. Vol. 46. P. 687–699.
doi:10.1016/j.enconman.2004.05.009

14. Kodama, S., Nishimoto, T., Yogo, K., Yamada, K. Design and evaluation of a new CO2 fixation process using alkaline-earth metal wastes // Proc. 8-th International Conference of Greenhouse Gas Control Technologies, Trondheim, Norway, 19–22 June, 2006; Elsevier Ltd.: Trondheim, Norway, 2006; 5 p. [CD-ROM].

15. Baciocchi, R., Polettini, A., Pomi, R., Prigiobbe, V., Von Zedwitz, V., Stein­feld, A. CO2 sequestration by direct gas-solid carbonation of air pollution control (APC) residues // Energy & Fuels.2006. Vol. 20, No. 5. P. 1933–1940.

16. Baciocchi, R., Polettini, A., Pomi, R., Prigiobbe, V., Zedtwitz-Nikulshyna, V., Steinfeld, A. Performance and kinetics of CO2 sequestration by direct gas-solid carbonation of APC residues // Proc. 8-th International Conference of Green­house Gas Control Technologies, Trondheim, Norway, 17–22 June, 2006; Elsevier Ltd: Trondheim, Norway, 2006; 5 p. [CD-ROM].

17. Kuusik, R., Veskimäe, H., Uibu, M. Carbon dioxide binding in the heterogeneus systems formed at combustion of oil shale. 3. Transformations in the system suspension of ash – flue gases // Oil Shale.2002. Vol. 19, No. 3. P. 277–288.

18. Kuusik, R., Uibu, M., Toom, M., Muulmann, M.-L., Kaljuvee, T., Trikkel, A. Sulphation and carbonization of oil shale CFBC ashes in heterogeneous systems // Oil Shale.2005. Vol. 22, No. 4 Special. P. 421–434.

19. Uibu, M., Uus, M., Kuusik, R. CO2 mineral sequestration in oil shale wastes from Estonian power production // J. Environ. Manage. 2008, Vol. 90, No. 2. P. 1253–1260.
doi:10.1016/j.jenvman.2008.07.012

20. Kallaste, T., Liik, O., Ots, A. Possible energy sector trends in Estonia. Context of Climate Change. – Stockholm Environment Institute Tallinn Centre: Tallinn, 1999; 180 p.

21. Uibu, M., Kuusik, R., Veskimäe, H. Seasonal binding of atmospheric CO2 by oil shale ash // Oil Shale.2008. Vol. 25, No. 2. P. 254–266.

22. Reispere, H. J. Determination of free CaO content in oil shale ash // Transact. Tallinn Polytechnical Institute, series A. 1966. No. 245. P. 73–76 [in Estonian].

23. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale boilers // Oil Shale.2005. Vol. 22, No. 4 Special. P. 407–420.

24. Outokumpu HSC Chemistry for Windows. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database. Version 4.0. License Ser. No. 40050 for Tallinn University of Technology.

25. Domingo, C., Loste, E., Gomez-Morales, J., Garcia-Carmona, J. Calcite pre­cipitation by high-pressure CO2 carbonation route // J. Supercrit. Fluids.2006. Vol. 36, No. 3. P: 202–215.

26. Ritchie, I. M., Xu, B.-A. The kinetics of lime slaking // Hydrometallurgy.1990. Vol. 23, No. 2–3. P. 377–396.

27. Potgieter, J. H., Potgieter, P. P., de Waal, D. An empirical study of factors influencing lime slaking. Part II: Lime constituents and water composi­tion // Water SA.2003. Vol. 29, No. 2. P. 157–161.

28. Xu, B.-A., Giles, D. E., Ritchie, I. M. Reaction of lime with carbonate containing solutions // Hydrometallurgy.1998. Vol. 48, No. 2. P. 205–224.

29. Uibu, M., Trikkel, A., Kuusik, R. Transformations in the solid and liquid phase at aqueous carbonization of oil shale ash // Proc. ECOSUD VI, 4–7 Sept. 2007, Coimbra, Portugal, 2007; WIT Transactions on Ecology and Environment: 4–7 Sept. 2007, Coimbra, Portugal, 2007; P. 473–483.

Back to Issue