eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934


Full article in PDF format | doi: 10.3176/oil.2008.4.04



In this research, thermal characteristics and kinetic parameters of Tarfaya oil shale and its kerogen samples were determined by thermogravimetry (TG/DTG) under non-isothermal heating conditions. The pyrolysis experi­ments were performed increasing the temperature up to 1273 K at heating rates of 2, 10, 20 and 50 K/min in an inert atmosphere of nitrogen. The mass loss curve showed that pyrolysis of kerogen took place mainly in the range of 433–873 K. At higher temperatures there was a significant mass loss due to decomposition of mineral matter. It has been found that for oil shale and its kerogen analysed using the TG/DTG, the increase in the heating rate shifts the maximum rate loss to a higher temperature. Kissinger-Akahira-Sunose, Friedman, Flynn-Wall-Ozawa and Coats–Redfern methods were used to determine the apparent activation energies of materials' degradation. The analyses of the process mechanism by the methods of Criado et al. and Coats-Redfern showed that the most probable model for the pyrolysis process of organic matter of oil shale agrees with the diffusion model (D4 mechanism), and the thermal degradation process of isolated kerogen cor­responds to a mechanism involving a simple n-order model (F1 mechanism). The apparent activation energies for the organic matter of oil shale and isolated kerogen were 80–87 and 69–76 kJ/mol, respectively. A single kinetic expression is valid over the temperature range of kerogen pyrolysis between 433 and 873 K. In addition, the results indicate that the removal of mineral matter affected the kinetics and mechanism established for kerogen in oil shale.


  1. Nuttall, H. E., Guo, T. M., Schrader, S., Thakur, D. S. Pyrolysis kinetics of several key world oil shales //  Geochemistry and Chemistry of Oil Shales / F. P. Miknis, J .F. McKay (Eds.). ACS Symposium Series 230, American Chemical Society, Washington, DC, 1983. P. 269.

  2. Bekri, O., Ziyad, M. Synthesis of oil Shale R & D Activities in Morocco. – Proceedings of the 1991 Eastern Oil Shale Symposium, Lexington, Kentucky, 1991.

  3. Rajeshwar, K. The kinetics of the thermal decomposition of Green River oil-shale kerogen by non-isothermal thermogravimetry // Thermochim. Acta 1981. Vol. 45, No. 3. P. 253–263.

  4. Torrente, M. C., Galan, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain) // Fuel. 2001. Vol. 80, No. 3. P. 327–334.

  5. Kok, M. V. Thermal investigation of Seyitomer oil shale // Thermochim. Acta. 2001. Vol. 369, No. 1–2. P. 149–155.

  6. Karabakan, A., Yurum, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales // Fuel. 1998. Vol. 77, No. 12. P. 1303–1309.

  7. Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposi­tion kinetics of two Jordanian oil shales under different processing condi­tions // Fuel Process. Technol. 2000. Vol. 63, No. 1. P. 57–70.

  8. Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing condi­tions using thermogravimetric analysis // Appl. Energy. 2000. Vol. 66, No. 2. P. 113–133.

  9. Kissinger, H. E. Reaction kinetics in differential thermal analysis // Anal. Chem. 1957. Vol. 29, No. 11. P. 1702–1706.

10. Akahira, T., Sunose, T. Trans. Joint Convention of Four Electrical Institutes, Paper No. 246, 1969 Research Report // Chiba Institute of Technology Sci. Technol. 1971. Vol. 16. P. 22–31.

11. Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data // Nature. 1964. Vol. 201. P. 68–69.

12. Friedman, H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic // J. Polym. Sci., Part C. 1964. Vol. 6. P. 183–195.

13. Flynn, J. H., Wall, L. A. A quick, direct method for the determination of activation energy from thermogravimetric data // Polym. Lett. 1966. Vol. 4. P. 323–328.

14. Ozawa, T. A new method of analyzing thermogravimetric data // Bull. Chem. Soc. Jpn. 1965. Vol. 38, No. 11. P. 1881–1886.

15. Doyle, C. Kinetic analysis of thermogravimetric data // J. Appl. Polym. Sci. 1961. Vol. 5, No. 15. P. 285–292.

16. Criado, J. M. Kinetic analysis of DTG data from master curves // Termochim. Acta. 1978. Vol. 24, No. 1. P. 186–189.

17. Bouchta, R. Valorization studies of the Moroccan [sic] oil shales. – Office Nationale de Researches et Exploitations Pétrolières B. P. 774, Agdal, Rabat, Maroc, 1984.

18. Wang Qing, Bai Jingru, Sun Baizhong, Sun Jian. Comprehensive utilization strategy of Huandian oil shale instead of strategy of Huadian oil shale comprehensive utilization // Oil Shale. 2005. Vol. 22, No. 3. P. 305–316.

19. Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil shales // Appl. Energy. 1999. Vol. 63, No. 4. P. 269–286.

20. Wang Qing, Sun Baizhong, Hu Aijuan, Bai Jingru, Li Shaohua. Pyrolysis characteristics of Huadian oil shales // Oil Shale. 2007. Vol. 24, No. 2. P. 147–157.

21. Williams, P. T., Ahmad, N. Influence of process conditions on the pyrolysis of Pakistani oil shales // Fuel. 1999. Vol. 78, No. 6. P. 653–662.

22. Dogan, O. M, Uysal, B. Z. Non-isothermal pyrolysis kinetics of three Turkish oil shales // Fuel. 1996. Vol. 75, No. 12. P. 1424–1428.

23. Williams, P. F. V. Thermogravimetry and decomposition kinetics of British Kimmeridge clay oil shale // Fuel. 1985. Vol. 64, No. 4. P. 540–545.

24. Burnham, A. K., Happe, J. A. On the mechanism of kerogen pyrolysis // Fuel. 1984. Vol. 63, No. 10. P. 1353–1356.

25. Gersten, J., Fainberg, V., Hetsroni, A., Shindler, Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture // Fuel. 2000. Vol. 79, No. 13. P. 1679–1686.

26. Rajeshwar, K. Thermal analysis of coal, oil shales and oil sands // Thermochim. Acta. 1983. Vol. 63, No. 1. P. 97–112.

27. Thakur, D. S., Nuttall, H. E. Kinetics of pyrolysis of Moroccan oil-shale by thermogravimetry // Ind. Eng. Chem. Res. 1987. Vol. 26, No. 7. P. 1351–1356.

28. Skala, D., Kopsch, H., Sokič, M., Neumann, H.-J., Jovanovič, J. A. Thermo­gravi­metrically and differential scanning calorimetrically derived kinetics of oil shale pyrolysis // Fuel. 1987. Vol. 66, No. 9. P. 1185–1191.

29. Ballice, L., Yüksel, M., Saglam, M., Schulz, H., Hanoglu, C. Application of infrared spectroscopy to the classification of kerogen types and the thermo­gravimetrically derived pyrolysis kinetics of oil shales // Fuel. 1995. Vol. 74, No. 11. P. 1618–1623.

30. Dembicki, H. J. The effects of the mineral matrix on the determination of kinetic parameters using modified Rock Eval pyrolysis // Org. Geochem. 1992. Vol. 18, No. 4. P. 531–539.

31. Olivella, M. A., De Las Heras, F. X. C. Nonisothermal thermogravimetry of Spanish fossil fuels // Oil Shale. 2006. Vol. 23, No. 4. P. 340–355.

32. Olivella, M. A., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals // Oil Shale. 2008. Vol. 25, No. 2. P. 227–245.

33. Sonibare, O. O., Ehinola, O. A., Egashira, R. Thermal and geochemical charac­terization of Lokpanta oil shales, Nigeria // Energy Convers. Manage. 2005. Vol. 46, No. 15–16. P. 2335–2344.

34. Skala, D., Sokic, M., Kopsch, H. Oil shale pyrolysis – a new approach to the kinetic investigation of different kerogen type samples // Thermochim. Acta. 1988. Vol. 134. P. 353–358.

Back to Issue