eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2008.4.06


Industrial CO2 emissions and geological storage opportunities in Estonia, Latvia and Lithuania are studied within the framework of EU GEO­CAPACITY and CO2NET EAST projects supported by European Commission through Framework Programme 6. The structure of the energy sector and socio-economic conditions vary considerably between these three countries. A total of 24 large (emitting more than 0.1 million tonnes (Mt) of CO2) industrial sources of CO2 emissions, registered in 2005 in the European Trad­ing Scheme, consists of 11.5 Mt of CO2  from Estonia, 1.9 Mt from Latvia and 5.6 Mt from Lithuania. The highest amount of CO2 emission in Estonia is related to the oil shale used as the main fuel for power generation; the two largest Estonian power plants – Estonian and Baltic – produced respectively 7.7 and 2.25 Mt of CO2 in 2005 and 9.4 and 2.7 Mt of CO2 in 2007. CO2 emission from oil shale combustion is significantly higher in comparison with other fossil fuels as energy sources. This is why CO2 emission per capita in Estonia is about two times higher than the average value in Europe.

The three Baltic States are located within the Baltic sedimentary basin, the thickness of which varies from 100 m in Northeast Estonia up to 1900 m in Southwest Latvia and 2300 m in West Lithuania. The most prospective formation for geological storage of CO2 is the Cambrian reservoir. 15 large structures have been identified in Latvia with a total capacity exceeding 300 Mt of CO2. The tightness of structures is evidenced by 40 years of success­ful operation of the Inčukalns Underground Gas Storage. Due to shallow setting, geological conditions in Estonia are unfavourable for CO2 storage. Therefore an option of transporting CO2 from Estonia via pipelines to one of the Latvian storage structures could be considered. Alternatively, the technology of CO2 trapping by sorption of oil shale ash is under develop­ment in Estonia. In Lithuania, the capacity of CO2 storage in Cambrian and Devonian structures as well as in oil fields is negligible, but CO2 solubility and mineral trapping is a long-term option.

  1. Metz, B., Davidson, O., Coninck, H., Manuela, L., Meyer, L. (eds). Carbon Dioxide Capture and Storage. – IPCC Special Report, 2006.

  2. White, C. M., Strazisar, B. R., Granite, E. J., Hoffman, J. S., Pennline, H. W. Separa­tion and capture of CO2 from large stationary sources and sequestration in geological forma­tions – coalbeds and deep saline aquifers // J. Air Waste Manage. Assoc. 2003. Vol. 53, No. 6. P. 645–715.

  3. Mackenzie, F. T., Lerman, A. Carbon in the Geobiosphere – Earth’s Outer Shell. – Springer, 2006.

  4. Lokhorst, A.,  Wildenborg, T. Introduction on CO2 geological storage. Classification of storage options // Oil and Gas Science and Technology, Rev. IFP. 2005. Vol. 60, No. 3. P. 513–515.

  5. Crawford, H. R., Neill, G. H., Bucy, B. J., Crawford, P. B. Carbon dioxide: A multi­purpose additive for effective well stimulation // J. Pet. Technol. 1963. No. 237. P. 52–64.

  6. Herzog, H. J., Drake, E. M., Adams, E. E. CO2 Capture, Reuse, and Storage Technologies for Mitigating Global Climate Change. – Final Report, DOE No. DE-AF22-96PC01257, 1997.

  7. Bradley, R. A., Watts, E. C., Williams, E. R. Limiting Net Greenhouse Gas Emissions in the U.S. – Report to the US Congress, 1991.Vol. 1, US DOE.

  8. Winter, E. M., Bergman, P. D. Availability of depleted oil and gas reservoirs for disposal of carbon dioxide in the United States // Energy Convers. Manage. 1993. Vol. 34, No. 9–11. P. 1177–1187.

  9. Blunt, M., Fayers, F. J., Orr, F. M. Carbon dioxide in enhanced oil recovery // Energy Convers. Manage. 1993. Vol. 34, No. 9–11. P. 1197–1204.

10. Bachu, S., Gunter, W. D., Perkins, E. H. Aquifer disposal of CO2: Hydro­dynamic and mineral trapping // Energy Convers. Manage. 1994. Vol. 35, No. 4. P. 269–279.

11. Law, D. H.-S., Bachu, S. Hydrogeological and numerical analysis of CO2 disposal in deep aquifers in the Alberta sedimentary basin // Energy Convers. Manage, 1996. Vol. 37, No. 6–8. P. 1167–1174.

12. Bachu, S., Adams, J. J. Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution // Energy Convers. Manage. 2003. Vol. 44, No. 20. P. 3151–3175.

13. Bruant, R. G., Guswa, A. J., Celia, M. A., Peters, C. A. Safe storage of CO2 in deep saline aquifers // Environ. Sci. Technol. 2002. Vol. 36, No. 11. P. 241–245.

14. Gunter, W. D., Gentzis, T., Rottenfusser, B. A., Richardson, R. J. H. Deep coalbed methane in Alberta, Canada: A fuel resource with the potential of zero greenhouse emissions // Energy Convers. Manage. 1997. Vol. 38, Supplement 1. P. S217–S222.

15. Pashin, J. C., McIntyre, M. R. Temperature–pressure conditions in coalbed methane reservoirs of the Black Warrior basin: implications for carbon sequestration and enhanced coalbed methane recovery // Int. J. Coal Geol. 2003. Vol. 54. P. 167–183.

16. Greenhouse Gas Emissions in Estonia 1990-2005. National Inventory Report to the UNFCCC secretatriat. – Common Reporting Formats (CRF) 1990-2005. Ministry of Environment. Tallinn, 2007. ( annex_i_ghg_inventories/ national_inventories_submissions/items/3929.php).

17. Rimša, H., Krumholde, S., Gancone, A., Sinics, L., Cakars, I., Abolina, L. Latvia’s National Inventory Report – submitted under United Nations Convention on Climate Change. – Common Reporting Formats (CRF) 1990–2005. Riga, 2007. ( national_reports/annex_i_ghg_inventories/ national_inventories_submissions/items/3929.php).

18. National Greenhouse Gas Emission Inventory Report 2007 of the Republic of Lithuania. Reported Inventory 1990–2005. – Annual report under the UN Framework Convention on Climate Change. Vilnius, 2007.

19. Paškevičius, J. The Geology of the Baltic Republics. – Vilnius, 1997.

20. Shogenova, A., Kirsimäe, K, Bitjukova, L, Jõeleht, A, Mens, K. Physical properties and composition of cemented siliciclastic Cambrian rocks, Estonia // Nordic Petroleum Technology Series: V, Research in Petroleum Technology / I. Fabricius (ed.). Norway: Nordisk Energiforskning ÅS, 2001. Vol. 5. P. 123–149.

21. Sliaupa, S., Rasteniene, V., Lashkova, L, Shogenova, A. Factors controlling petrophysical properties of Cambrian siliciclastic deposits of Central and Western Lithuania // Nordic Petroleum Technology Series: V, Research in Petroleum Technology / I. Fabricius (ed.). Norway: Nordisk Energiforskning ÅS, 2001. Vol. 5. P. 157–180.

22. Jõeleht, A., Kirsimäe, K., Shogenova, A., Šliaupa, S., Kukkonen, I. T., Raste­niene, V., Zabele, A. Thermal conductivity of Cambrian siliciclastic rocks from Baltic paleo­basin // Proc. Acad. Sci. Estonia. Geol. 2002. Vol. 51, No. 1. P. 5–15.

23. Shogenova, A, Mens, K., Sliaupa, S., Rasteniene, V., Jõeleht, A., Kirsimäe, K., Zabele, A., Freimanis, A. Factors influenced porosity of the siliciclastic rocks in the Baltic Cambrian basin // Extended Abstracts. Vol. 2. 64th EAGE Conference and Technical Exhibition, Florence 26–30 May 2002. – The Netherlands: European Association of Geoscientists & Engineers, 2002. P. 218. P. 1–5.

24. Šliaupa, S., Hoth, P., Shogenova, A., Huenges, E., Rasteniene, V., Freimanis, A., Bityu­kova, L., Joeleht, A., Kirsimäe, K., Laskova, L., Zabele, A. Characterization of Cambrian reservoir rocks and their fluids in the Baltic States (CAMBALTICA) //  Cleaner Energy Systems Through Utilization of Renew­able Geothermal Energy Resources / W. Bujakowski (ed.). Krakow: Kajc, 2003. P. 61–73.

25. Šliaupa, S., Satkūnas, J., Šliaupienė, R. Prospects of CO2 geological sequestra­tion in Lithuania // Geologija. 2005. No 51. P. 19–28 [in Lithuanian with English summary].

26. Geological Structures for the Establishment of Underground Gas Storages. – Riga: Latvian Environment, Geology and Meteorology Agency, 2007.

27. Shogenova, A., Sliaupa, S., Shogenov, K., Vaher, R., Sliaupiene, R. Geological Storage of CO2 – Prospects in the Baltic States // 69th EAGE Conference & Exhibition, Incorporat­ing SPE EUROPEC, London. Extended Abstracts. EAGE, 2007. P. 228. P. 1–6.

28. Brangulis, A., Kanevs, S. Latvijas Tektonika. – Riga, 2002 [in Latvian].

29. Šliaupa, S., Laškovas, E., Lazauskienė, J., Laškova, L., Sidorov, V. The petroleum system of the Lithuanian offshore region // Zeitschrift für Angewandte Geology. Hannover, 2004. Sonderheft 2. P.41–59.

30. Stirpeika, A. Tectonic Evolution of the Baltic Syneclise and Local Structures in the South Baltic Region with Respect to their Petroleum Potential. – Vilnius, 1999.

31. Kaszuba, J. P, Janecky, D. R., Snow, M. G. Carbon dioxide reaction processes in a model brine aquifer at 200 °C and 200 bars: implications for geologic sequestration of carbon // Appl. Geochem. 2003. Vol. 18, No. 7. P. 1065–1080.

32. Spycher, N., Pruess, K., Ennis-King, J. CO2 - H2O mixtures in the geological sequestra­tion of CO2. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar // Geochim. Cosmochim. Acta. 2003. Vol. 67, No. 16. P. 3015–3031.

33. Ennis-King, J., Gibson-Poole, C. M., Lang, S. C., Paterson, L. Long-term numerical simulation of geological storage of CO2 in the Petrel Sub-basin, North West Australia// Greenhouse Gas Control Technologies. Proc. 6th Int. Conf. on Greenhouse Gas Control Technologies, 1–4 October 2002, Kyoto, Japan / J. Gale, Y. Kaya (Eds.). Elsevier Science, 2003. Addendum. P. 11–16.

34. Van der Meer, L. G. H., Hartman, J., Geel, C., Kreft, E. Re-injecting CO2 into an offshore gas reservoir at a depth of nearly 4000 metres sub sea //  Proc. 7th Int. Conf. on Greenhouse Gas Control Technologies. Vol. 1. Peer-Reviewed Papers and Plenary Presentations / E. S. Rubin, D. W. Keith and C. F. Gilboy (Eds.). UK: IEA Greenhouse Gas Programme, Cheltenham, 2003.

35. Pruess, K., Garcia, J. Multiphase flow dynamics during CO2 disposal in aquifers // Environ. Geol. 2003. 42. P. 282–295.

36. Hitchon, B. (ed.). Aquifer Disposal of Carbon Dioxide: Hydrodynamics and Mineral Trapping – Proof of Concept. – Canada: Geoscience Publishing Ltd., 1996.

37. Kuusik, R., Veskimäe, H., Kaljuvee, T., Parts, O. Carbon dioxide binding in the heterogeneous systems formed by combustion of oil shale. 1. Carbon dioxide binding at oil shale ash deposits // Oil Shale. 2001. Vol. 18, No. 2. P. 109–122.

38. Kuusik, R., Türn, L., Trikkel, A., Uibu, M. Carbon dioxide binding in the heterogeneous systems formed at combustion of oil shale. 2. Integrations of system components – thermodynamic analysis // Oil Shale. 2002. Vol. 19, No. 2. P. 143‑160.

39. Kuusik, R., Veskimäe, H., Uibu, M. Carbon dioxide binding in the heterogeneous systems formed by combustion of oil shale. 3. Transformations in the system suspension of ash – flue gases // Oil Shale. 2002.Vol. 19, No. 3. P. 277–288.

40. Uibu, M., Trikkel, A., Kuusik, R. Transformations in the solid and liquid phase at aqueous carbonization of oil shale ash // WIT Transactions on Ecology and the Environment 2007: ECOSUD VI, Coimbra (Portugal) / E. Tiezzi, J. C. Marques, C. A. Brebbia, S. E. Jorgensen (eds.). WIT Press, 2007. (106). P. 473–483.

41. Uibu, M., Kuusik, R. Concept for CO2 mineralization by oil shale waste ash in Estonian power production // Proc. of IGEC III: The 3rd Int. Green Energy Conference, Västeras, Mälardalens University, Sweden, 2007 / Yan, Jinyue (ed.) CD-ROM. P. 1075–1085.

42. Domžalski, J., Górecki, W., Mazurek, A., Myśko, A., Strzeteski, W., Szamalek, K. The prospects for petroleum exploration in the eastern sector of Southern Baltic as relevant by sea bottom geochemical survey correlated with seismic data // Prszegląd Geologiczny. 2004. Vol. 52, No. 8/2. P. 792–799.

43. Brangulis, A. P., Kanev, S. V., Margulis, L. S., Pomerantseva, R. A. Geology and hydro­carbon prospects of the Paleozoic in the Baltic region // Petroleum Geology of NW Europe. / Proc. of the 4th Conference, London, March-April, 1992 J. R. Parker (ed.). Geol. Soc., 1993.

44. Zdanavičiūtė, O., Sakalauskas, K. Petroleum Geology of Lithuania and Southeastern Baltic. – Vilnius, GGI, 2001

45. Davis, A., Jesinska, A., Kreslins, A., Zebergs, V., Zeltins, N. Increasing role of under­ground gas storages for reliable supply of gas to Latvia, Lithuania, Estonia, Finland and NW Russia and prospects of development of Incukalns underground gas storage. – 23rd World Gas Conference, Amsterdam, 5–9 June 2006 (CD).

Back to Issue