eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
PDF | doi: 10.3176/oil.2008.2.05

M. À. Olivella, F. X. C. De Las Heras
This work involves a comparative study of six different linear methods: three methods based on several curves and three based on a single curve for deriv­ing kinetic parameters from TG/DTG curves in the interval related to oil and hydrocarbon generation. Such methods were applied for interpretation of nonisothermal data obtained at pyrolysis of two Spanish coals and two samples of oil shale. In order to elucidate the most accurate methods based on a single TG/DTG curve, respective equations were simulated by the use of a simulation program. Although some of these methods were proposed more than 30 years ago, they are extensively used nowadays and useful for study­ing thermal degradation of solids. Comparison of experimental data with simulated curves shows that the differential method followed by the integral one proposed by Friedman, Popescu and Segal were the most accurate methods. In contrast, differential methods based on single and several curves developed by Vachusca, Voboril and Friedman, respectively, were con­sidered the least accurate methods.

1. Šesták, J., Šatava V. V., Wendlandt, W. W. The study of heterogeneous pro­cesses by thermal analysis // Thermochim. Acta. 1973. Vol. 7, No. 5. P. 333–336.

2. Brown, M. E., Dollimore, D., Galwey, A. K. Reactions in the solid state. Comprehensive Chemical Kinetics (Ed. Brown, M.E.). Elsevier, Amsterdam, 1980. 356 pp.

3. Šesták, J., Berggren, G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures // Thermochim. Acta. 1971. Vol. 3, No. 1. P. 1–12.

4. Zsakó, J. Kinetic analysis of thermogravimetric data. XXIX. Remarks on the ´many curves` methods // J. Thermal Anal. Cal. 1996. Vol. 46, No. 6. P. 1845–1864.

5. Vyazovkin, S. V., Linert, W. Detecting isokinetic relationships in non-isothermal systems by isoconversional method // Thermochim. Acta. 1995. Vol. 269–270. P. 61–72.

6. Kök, M. V. Thermal analysis applications in fossil fuel science // J. Therm. Anal. Cal. 2002. Vol. 68, No. 3. P. 1061–1077.

7. Fuller, E. L., Kopp, O. C., Rogers, M. R. Thermogravimetric and mass spectro­scopic analysis of solvent refined Powellton coal, West Virginia (U.S.A.) / J. A. Pajares, J. M. D. Tascón (Eds.). Coal Science, Elsevier, Oviedo, 1995. P. 889–900.

8. Kök, M. V., Okandan, E. Kinetic analysis of DSC and thermogravimetric data on combustion of lignite // J. Therm. Anal. Cal. 1996. Vol. 46, No. 6. P. 1657–1669.

9. Kök, M. V. Thermal analysis of Beypazari lignite // J. Therm. Anal. Cal. 1997. Vol. 49, No. 2. P. 617–625.

10. Kök, M. V.Evaluation of Turkish oil shales. Thermal analysis approach // Oil Shale. 2001. Vol. 18, No. 2. P. 131–138.

11. Popescu, C., Segal, E. Critical considerations on the methods for evaluating kinetic parameters from nonisothermal experiments // Int. J. Chem. Kinet. 1998. Vol. 30, No. 5. P. 313–327.

12. Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic // J. Pol. Sci. 1964. Vol. 6C. P. 183–195.

13. ASTM E 698-79. Standard Test Method for Arrhenius Kinetic Constants for Thermally Unstable Materials. 1979.

14. Rogers, R. N., Smith, L. C.

 Estimation of preexponential factor from thermal decomposition curve of an unweighed sample// Anal. Chem. 1967. Vol. 39, No. 8. P. 1024–1025.

15. Pérez-Maqueda, L. A., Sánchez-Jiménez, P. E., Criado, J. M. Evaluation of the integral methods for the kinetic study of thernally stimulated processes in polymer science // Polymer. 2005. Vol. 46, No. 9. P. 2950–2954.

16. Wu, C. S., Liu, Y. L., Hsu, K. Y. Maleimide-epoxy resins: preparation, thermal properties, and flame retardance // Polymer. 2003. Vol. 44, No. 3. P. 565–573.

17. Chang, T. C., Yeh, T. F., Yang, C. W., Hong, Y. S., Wu, T. R. Chain dynamics and stability of the poly (3-methacryloxypropyltrimethoxysilane-co-vinyl­imidazole) // Polymer. 2001. Vol. 42, No. 21. P. 8565–8570.

18. Zvetkov, V. L. Comparative DSC kinetics of the reaction of DGEBA with aromatic diamines. I. Non-isothermal kinetic study of the reaction of DGEBA with m-phenylene diamine // Polymer. 2001. Vol. 42, No. 16. P. 6687–6697.

19. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG // Oil Shale. 2003. Vol. 20, No. 1. P. 57–68.

20. Kök, M. V., Pokol, G., Keskin, C., Madarász, J. Bagci, S.Combustion charac­teristics of lignite and oil shale samples by thermal analysis techniques // J. Therm. Anal. Cal. 2004. Vol. 76, No. 1. P. 247–254.

21. Kök, M. V., Iscan, A. G.Oil shale kinetics by differential methods // J. Therm. Anal. Cal. 2007. Vol. 88, No. 3. P. 657–661.

22. Olivella M. A., de las Heras, F. X. C.Nonisothermal thermogravimetry of Spanish fossil fuels // Oil Shale. 2006. Vol. 23, No. 4. P. 340–355.

23. Vachuška, J., Voboril, M.Kinetic data computation from non-isothermal thermo­gravimetric curves of non-uniform heating rate // Thermochim. Acta. 1971. Vol. 2, No. 5. P. 379–392.

24. Popescu, C. Integral method to analyze the kinetics of heterogeneous reactions under non-isothermal conditions. A variant on the Ozawa-Flynn-Wall method // Thermochim. Acta. 1996. Vol. 285, No. 2. P. 309–323.

25. Querol, X., Cabrera, L., Pickel, W., López-Soler, A., Hagemann, H. W., Fernán­dez Turiel, J. L. Geological controls on the coal quality of the Mequinenza subbituminous coal deposit, northeast Spain // Int. J. Coal Geol. 1996. Vol. 29, No. 1–3. P. 67–91.doi:10.1016/0166-5162(95)00009-7

26. Querol, X., Chinchón, S., López-Soler, A. Iron sulfide precipitation sequence in Albian coals from the Maestrazgo Basin, Southeastern Iberian Range, Northeastern Spain // Int. J. Coal Geol. 1989. Vol. 11, No. 2. P. 171–189.

27. Anadón, P., Cabrera, L., Julià, R., Roca, E., Rosell, L. Lacustrine oil shale basins in tertiary grabens from NE Spain (Western European rift system) // Palaeogeogr. Palaeoclimat. Palaeocol. 1989. Vol. 70, No. 1–3. P. 7–28.

28. Orr W. L. Kerogen/asphaltene/sulfur relationships in sulfur-rich Monterey oils // Org. Geochem. 1986. Vol. 10, No. 1–3. P. 499–516.

29. Olivella, M. A.Study of sulfur in fossil fuels. PhD. Thesis, Universitat Poli­tècnica de Catalunya (ed), Manresa, 2000. 325 pp.

30. Olivella, M. A., de las Heras, F. X. C. Kinetic analysis in the maximum tem­perature of oil generation by thermogravimetry in Spanish fossil fuels // Energy & Fuels. 2002. Vol. 16, No. 6. P. 1444–1449.

31. Elmqvist, H., Aström, K. J., Schönthal, T. Simnon User’s Guide for MS-DOS computers, version 1. – Ed. Department of Automatic Control. Sweden, 1986.

32. Narayan, R., Antal, M. J. Thermal lag, fusion and the compensation effect during biomass pyrolysis // Ind. Eng. Chem. Res. 1996. Vol. 35, No. 5. P. 1711–1721.

33. Zsakó, J., Várhelyi, Cs; Kékedy, E.; Szilágyi, K.Kinetic analysis of thermo­gravimetric data. XXIX. Remarks on the many curves methods // J. Thermal Anal. Cal. 1975. Vol. 7, 41–50.

34. Mianowski, A., Radko, T. Isokinetic effect in coal pyrolysis // Fuel. 1993. Vol. 72, No. 11. P. 1537–1539.

35. Wilburn, F. W. The determination of kinetic parameters from DTG curves – fact or fiction? // Thermochim. Acta. 1999. Vol. 340–341. P. 77–87.

36. Vyazovkin, S., Linert, W. Kinetic analysis of reversible thermal decomposition of solids // Int. J. Chem. Kinet. 1995. Vol. 27, No. 1. P. 73–84.

37. Criado, J. M., Ortega, A., Gotor, F. Correlation between the shape of controlled rate thermal analysis curves and the kinetics of solid state reactions // Thermo­chim. Acta. 1990. Vol. 157, No. 1. P. 171–179.

38. Vyazovkin, S. A unified approach to kinetic processing of non-isothermal data // Int. J. Chem. Kinet. 1996. Vol. 28, No. 2. P. 95–101.

Back to Issue