eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Properties of kukersite shale oil; pp. 265–294
PDF | 10.3176/oil.2021.4.01

Oliver Järvik, Zachariah Steven Baird, Rivo Rannaveski, Vahur Oja

Despite the increasing focus on reducing carbon dioxide emissions, the production of shale oil continues to be economically favorable and has even increased in recent years. Producing and handling shale oil requires data on its properties, and to provide this data the authors have undertaken an extensive project to experimentally measure the properties of Estonian kukersite shale oil. In this article we describe the sample preparation methods and present experimental data on key properties of the shale oil samples. Included is data on the densities, refractive indexes, average boiling points, and molar masses of distillation fractions with narrow boiling ranges. A major component of kukersite shale oil is phenolic compounds, and to investigate their effect on the properties we used extraction to obtain samples with either fewer or more phenols than commonly found in the oil. The effect of composition on the properties is discussed. We also present correlations for calculating one of these properties if two others are known. This article lays the groundwork for future articles which will go into further details on specific properties of these samples.


1. Lee, S. Oil Shale Technology. CRC Press, 1990.

2. Oja, V., Suuberg, E. M. Oil Shale Processing, Chemistry and Technology. In: Encyclopedia of Sustainable Science and Technology (Meyers, R. A., ed.). 2012, Springer-Verlag New York, 7457–7491.

3. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, 2014. (accessed Nov. 01, 2019).

4. World Energy Council. World Energy Resources 2016. World Energy Council, London, 2016.

5. Koovit, K. Viru Keemia Group begins construction of oil shale plant. Postimees, Aug. 07, 2012 (in Estonian).

6. Eesti Energia’s Enefit280 oil plant is operating at 70% capacity. Postimees, Nov. 07, 2014 (in Estonian).

7. Technological indicators of VKG’s Petroter III plant exceed expectations. Viru Keemia Grupp. (accessed Nov. 12, 2019).

8. Sandor Liive presented the oil plant’s product – Enefit280 finally operates stably. Ärileht, Apr. 09, 2014 (in Estonian).

9. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799–804.

10. Schmidt-Collerus, J. J., Prien, C. H. Investigation of the hydrocarbon structure of kerogen from oil shale of the Green River Formation. Am. Chem. Soc. Div. Fuel Chem. Prepr., 1974, 19(2), 100–108.

11. Robinson, W. E. Kerogen of the Green River Formation. In: Organic Geochemistry (Eglinton, G., Murphy, M. T. J., eds.). Springer Berlin Heidelberg, 1969, 619–637.

12. Urov, K., Sumberg, A. Characteristics of Oil Shales and Shale-Like Rocks of Known Deposits and Outcrops: Monograph. Estonian Acad. Publ., Tallinn, 1999.

13. Bartis, J. T., LaTourrette, T., Dixon, L., Peterson, D. J., Cecchine, G. Oil Shale Development in the United States: Prospects and Policy Issues. Rand Corporation, 2005.

14. Raukas, A., Punning, J.-M. Environmental problems in the Estonian oil shale industry. Energy Environ. Sci., 2009, 2(7), 723–728.

15. World Energy Council. World Energy Resources 2013 Survey. World Energy Council, London, 2013.

16. Enefit. Oil Shale Fired Power Plant (accessed Oct. 09, 2020).

17. Al-Khalidi, S. Jordan moves ahead with $2.1 bln oil shale power plant. Reuters, March 16, 2017.

18. Zhang, X.-S., Wang, H.-J., Ma, F., Sun, X.-C., Zhang, Y., Song, Z.-H. Classification and characteristics of tight oil plays. Petrol. Sci., 2016, 13(1), 18–33.

19. Järvik, O., Oja, V. Molecular weight distributions and average molecular weights of pyrolysis oils from oil shales: Literature data and measurements by size exclusion chromatography (SEC) and atmospheric solids analysis probe mass spectroscopy (ASAP MS) for oils from four different deposits. Energy Fuels, 2016, 31(1), 328–339.

20. Guo, S. H. The chemistry of shale oil and its refining. In: Coal, Oil Shale, Natural Bitumen, Heavy Oil and Peat, Vol. II, 2009, Publishers Company Limited, 94–106.

21. Oja, V., Elenurm, A., Rohtla, I., Tali, E., Tearo, E., Yanchilin, A. Comparison of oil shales from different deposits: Oil shale pyrolysis and co-pyrolysis with ash. Oil Shale, 2007, 24(2), 101–108.

22. Oja, V., Rooleht, R., Baird, Z. S. Physical and thermodynamic properties of kukersite pyrolysis shale oil: Literature review. Oil Shale, 2016, 33(2), 184–197.

23. Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale. Oil Shale, 2008, 25(2S), 101–114.

24. Oil shale – Estonia’s future. Päevaleht, Aug. 11, 1927, Tallinn, Estonia (in Estonian).

25. Kattai, V. Oil shale. Eesti Geoloogiakeskus, Tallinn, 2003 (in Estonian).

26. Veidermaa, M. Estonian oil shale – resources and usage. Oil Shale, 2003, 20(3 SPECIAL), 295–303.

27. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3 SPECIAL), 311–323.

28. Yefimov, V. Oil shale processing in Estonia and Russia. Oil Shale, 2000, 17(4), 367–385.

29. Heistand, R. N. Fischer Assay, a standard method. Am. Chem. Soc. Div. Fuel Chem. Prepr., 1976, 21(6), 40–54, American Chemical Society meeting, San Francisco, California, USA (29 Aug 1976).

30. Luts, K. The Estonian Oil Shale Kukersite, its Chemistry, Technology and Analysis (Der estländische Brennschiefer-Kukersit, seine Chemie, Tehnologie und Analyse). K. Mattiesens Buchdruckerei Ant.-Ges., Tartu, Estonia, 1934.

31. Yefimov, V. M., Rooks, I. H. The Kiviter process for retorting large particle oil shale. In: Oil Shale Symposium Proceedings (USA), 1989, 22, 256–263.

32. Viru Keemia Grupp. Technology (accessed Nov. 20, 2020).

33. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3 SPECIAL), 324–332.

34. Blinova, E. A., Veldre, I. A., Jänes, H. J. The Toxicology of Shale Oils and Phenols. Valgus, Tallinn, 1974 (in Russian).

35. Kollerov, D. K. Physicochemical Properties of Oil Shale and Coal Liquids. Moscow, 1951 (in Russian).

36. Barschevski, M. M., Bezmozgin, E. S., Shapiro, R. N. Handbook of Oil Shale Processing. Gostopizdat, Leningrad, 1963 (in Russian).

37. Zelenin, N. I. Shale Oil Liquid Fuel. Gostoptekhizdat, Leningrad, 1948 (in Russian).

38. Zelenin, N. I. The composition and properties and potential uses of shale oils. In: VNIIPS Proceedings, 1958, 7 (in Russian).

39. Sheloumov, V. V., Epstein, S. A. Semicoking oil shale in tunnel ovens. In: Oil Shale Compilation. Chemistry and Technology. 1956 (in Russian).

40. Aarna, A., Kask, K. About the determination of the group composition of middle oil fractions of shale oil by chromatographic analysis. Proceedings of Tallinn Polytechnic Institute, Series A, 1953, No. 51 (in Russian).

41. Epstein, S. A., Sheloumov, V. V., Kuznetsov, D. T. Experience from techno-economical comparison of methods of semicoking Baltic oil shale. In: Compilation of Questions Concerning Technology and Economics of the Oil Shale Semicoking Industry 1959, 2, Leningrad, Gostoptekhizdat (in Russian).

42. Ründal, L. J. Calculation method for determining the chemical composition of shale gas. In: Proceedings of Tallinn Polytechnical Institute, Series A. 1956, 73, 109–114 (in Estonian).

43. Kogerman, P. N. On the Chemistry of the Estonian Oil Shale “Kukersite”. Oil Shale Research Laboratory, Tartu, Estonia, 1931.

44. Qian, J., Yin, L. Oil Shale: Petroleum Alternative. China Petrochemical Press, 2010.

45. Oja, V., Rooks, I., Elenurm, A, Martins, A., Uus, E., Milk, A. An evaluation of the potential for application of gasification technology for oil shale production in Estonia. Chemical Engineering Department, Tallinn University of Technology, Tallinn, 2006 (in Estonian).

46. Maaten, B., Järvik, O., Pihl, O., Konist, A., Siirde, A. Oil shale pyrolysis products and the fate of sulfur. Oil Shale, 2020, 37(1), 51–69.

47. Eisen, O. G., Rang, S. A. Individual Composition of Shale Oil Hydrocarbons. Institute of Chemistry, Academy of Sciences of Estonian SSR, Tallinn, 1968.

48. Gubergrits, M. J., Rohtla, I., Elenurm, A., Myasoyedov, A. M. Comparison of light oil products from oil shale retorting in solid heat carrier units UTT-3000 and UTT-500. Oil Shale, 1989, 6(2), 189–194 (in Russian).

49. Baird, Z. S., Oja, V., Järvik, O. Distribution of hydroxyl groups in kukersite shale oil: Quantitative determination using Fourier transform infrared (FT-IR) spectroscopy. Appl. Spectrosc., 2015, 69(5), 555–562.

50. Baird, Z. S. Predicting Fuel Properties from Infrared Spectra. PhD thesis, Tallinn University of Technology, TUT Press, Tallinn, Estonia, 2017.

51. ASTM D86. Standard Test Method for Distillation of Petroleum Products at Atmospheric Pressure. ASTM International, West Conshohocken, PA, USA, 2012.

52. ASTM D2892. Standard Test Method for Distillation of Crude Petroleum (15-Theoretical Plate Column). ASTM International, West Conshohocken, PA, USA, 2016.

53. Rannaveski, R., Järvik, O., Oja, V. A new method for determining average boiling points of oils using a thermogravimetric analyzer. J. Therm. Anal. Calorim., 2016, 126, 1679–1688.

54. ISO 647:1974. Brown Coals and Lignites – Determination of the Yields of Tar, Water, Gas and Coke Residue by Low Temperature Distillation. International Organization for Standards, 2009.

55. Baird, Z. S., Uusi-Kyyny, P., Oja, V., Alopaeus, V. Hydrogen solubility of shale oil containing polar phenolic compounds. Ind. Eng. Chem. Res., 2017, 56(30), 8738–8747.

56. Baird, Z. S., Uusi-Kyyny, P., Järvik, O., Oja, V., Alopaeus, V. Temperature and pressure dependence of density of a shale oil and derived thermodynamic properties. Ind. Eng. Chem. Res., 2018, 57(14), 5128–5135.

57. ASTM D2224. Method of Test for Mean Molecular Weight of Mineral Insulating Oils by the Cryoscopic Method. ASTM International, West Conshohocken, PA, USA, 1983.

58. Rannaveski, R. Developing a Novel Method for Using Thermal Analysis to Determine Average Boiling Points of Narrow Boiling Range Continuous Mixtures. PhD thesis, Tallinn University of Technology, Tallinn, Estonia, 2018 (in Estonian).

59. Riazi, M. R. Characterization and Properties of Petroleum Fractions. ASTM International, 2005.

60. Riazi, M. R., Daubert, T. E. Characterization parameters for petroleum fractions. Ind. Eng. Chem. Res., 1987, 26(4), 755–759.

61. Storn, R., Price, K. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 1997, 11(4), 341–359.

62. Jones, E., Oliphant, T., Peterson, P. SciPy: Open Source Scientific Tools for Python. 2001. (accessed Sep. 28, 2016).

63. Rousseeuw, P. J., Leroy, A. M. Robust Regression and Outlier Detection. John Wiley & Sons, 2005.

64. Siitsman, C., Oja, V. Extension of the DSC method to measuring vapor pressures of narrow boiling range oil cuts. Thermochim. Acta, 2015, 622, 31–37.

Back to Issue