eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
Study on the permeability of oil shale during in situ pyrolysis; pp. 119–136
PDF | 10.3176/oil.2021.2.02

Li Li, Jian Liu, Yide Geng

It is of great significance to quantitatively study the permeability of oil shale and its variation during in situ pyrolysis, which can be used to predict the hydrogeological environment changes induced by the in situ pyrolysis process. Since oil shale permeability during in situ pyrolysis cannot be directly measured in real time, a systematic analysis of pyrolysis kinetics and mechanism, combined with thermogravimetric experiments, allow a constitutive model of the porosity and elastic modulus of oil shale to be deduced. In analyzing the stress and strain mechanism of oil shale under in situ conditions, combined with the quantitative relationship between porosity and permeability, a constitutive permeability model of oil shale during in situ pyrolysis was established. Meanwhile, the predicted variation of oil shale permeability during in situ pyrolysis was compared with experimental results.


1. Le Doan, T. V., Bostrom, N. W., Burnham, A. K., Kleinberg, R. L., Pomerantz, A. E., Allix, P. Green River oil shale pyrolysis: semi-open conditions. Energy Fuels, 2013, 27(11), 6447‒6459.

2. Huan, Z., Weiping, S., Dali, D., Zhang, C. Numerical simulation of in situ combustion of oil shale. Geofluids, 2017, 2017, 1‒9.

3. Kang, Z. The Pyrolysis Characteristics and In-Situ Hot Drive Simulation Research that Exploit Oil–Gas of Oil Shale. PhD thesis, Taiyuan University of Technology, 2008 (in Chinese with English abstract).

4. Kang, Z., Yang, D., Zhao, Y., Hu, Y. Thermal cracking and corresponding permeability of Fushun oil shale. Oil Shale, 2011, 28(2), 273‒283.

5. Eseme, E., Krooss, B. M., Littke, R. Evolution of petrophysical properties of oil shales during high-temperature compaction tests: Implications for petroleum expulsion. Mar. Petrol. Geol., 2012, 31(1), 110‒124.

6. Tiwari, P., Deo, M., Lin, C. L., Miller, J. D. Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT. Fuel, 2013, 107, 547‒554.

7. Zhao, J., Feng, Z., Yang, D., Kang, Z. Study on pyrolysis and internal structure variation of oil shale based on 3D CT images. Chin. J. Rock Mech. Eng., 2014, 33(1), 112‒117 (in Chinese with English abstract).

8. Jiang, X., Chu, T. M., Liang, X. J., Xiao, C. L., Yan, B. Z., Wang, Y. N. Impact of mining oil shale in different methods on the environment. In: Environment, Energy and Sustainable Development (Sung, W., Kao, J., Chen, R., eds.). Taylor & Francis Group, London, 2014, 359‒363.

9. Qiu, S. Experimental Study on the Impacts of Oil Shale In-situ Pyrolysis on Groundwater Hydrochemical Characteristics. PhD thesis, Jilin University, 2016 (in Chinese with English abstract).

10. Bai, F., Sun, Y., Liu, Y., Guo, M. Evaluation of the porous structure of Huadian oil shale during pyrolysis using multiple approaches. Fuel, 2017, 187, 1‒8.

11. Burnham, A. K. Porosity and permeability of Green River oil shale and their changes during retorting. Fuel, 2017, 203, 208‒213.

12. Geng, Y., Liang, W., Liu, J., Cao, M., Kang, Z. Evolution of pore and fracture structure of oil shale under high temperature and high pressure. Energy Fuels, 2017, 31(10), 10404‒10413.

13. Geng, Y., Liang, W., Liu. J., Kang, Z., Wu, P., Jiang, Y. Experimental study on the variation of pore and fracture structure of oil shale under different temperatures and pressures. Chin. J. Rock Mech. Eng., 2018, 37(11), 2510‒2519 (in Chinese with English abstract).

14. Geng, Y., Liu, J., Bi, J. Experimental study of pore structure of Fushun oil shale after pyrolysis. Coal. Technol., 2018, 37(6), 84‒86 (in Chinese with English abstract).

15. Geng, Y., Liang, W., Liu. J., Wu, P., Zhao, J. Experimental study on the law with permeability of Fushun oil shale under high temperature and triaxial stresses. J. Taiyuan. Univ. Technol., 2019, 50(3), 272‒278 (in Chinese with English abstract).

16. Guo, S., Geng, L. Study on pyrolysis kinetics of oil shales by thermogravimetry. J. Fuel Chem. Technol., 1986, 14(3), 211‒217 (in Chinese with English abstract).

17. Cai, M. Rock Mechanics and Engineering. Science Press, Beijing, 2002 (in Chinese).

18. Coats, A. W., Redfern, J. P. Kinetic parameters from thermogravimetric data. Nature, 1964, 201(4914), 68‒69.

19. Weitkamp, A. W., Gutberlet, L. C. Application of a micro retort to problems in shale pyrolysis. Ind. Eng. Chem. Proc. Des. Dev., 1970, 9(3), 386‒395.

20. Shih, S.-M., Sohn, H. Y. Nonisothermal determination of the intrinsic kinetics of oil generation from oil shale. Ind. Eng. Chem. Proc. Des. Dev., 1980, 19(3), 420‒426.

21. Braun, R. L., Rothman, A. J. Oil-shale pyrolysis: Kinetics and mechanism of oil production. Fuel, 1975, 54(2), 129‒131.

22. Zhao, J. Experimental Study on the Microscopic Characteristics and Mechanical Property of Oil Shale under High Temperature & Three-Dimensional Stress. PhD thesis, Taiyuan University of Technology, 2014 (in Chinese with English abstract).

23. Qian, J., Yin, L. Oil Shale: Petroleum Alternative. China Petrochemical Press, Beijing, 2008 (in Chinese).

24. Yang, S., Wei, J. Reservoir Physics. China Petrochemical Press, Beijing, 2004 (in Chinese).

25. Qin, K. Investigation on the constitution and structure of Maoming and Fushun oil shale. Average building block of organic matter. J. Fuel Chem. Technol., 1986. 14(1), 3‒10 (in Chinese with English abstract).

26. Liu, G. Petroleum Geology. China Petrochemical Press, Beijing, 2009 (in Chinese).

27. Yu, Q., Zheng, C., Yang, T., Tang, S., Wang, P., Tang, C. Meso-structure characterization based on coupled thermal-mechanical model for rock failure process and applications. Chin. J. Rock Mech. Eng., 2012, 31(1), 42‒51 (in Chinese with English abstract).

28. Feng, Z., Zhao, Y. Pyrolytic cracking in coal: Meso-characteristics of pore and fissure evolution observed by micro-CT. J. China Coal Soc., 2015, 40(1), 103‒108 (in Chinese with English abstract).

29. Yan, C. Simulating thermal cracking of rock using FDEM-TM method. Chin. J. Rock Mech. Eng., 2018, 40(7), 1198‒1204 (in Chinese with English abstract).

Back to Issue