eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Research article
Exploring the influence of effective stress sensitivity on oil shale: implications for porosity and permeability; pp. 77–102

Dandan Lu, Yao Cheng, Longfei Zhao

Changes in the porosity and permeability of oil shale under the overburden pressure often have a significant impact on the subsequent development of reservoirs. The authors of this article investigated the over burden porosity and permeability characteristics of tight oil reservoirs in two regions in China: the Fushun West Open-pit Mine in Liaoning and the Jimsar shale oilfield in Xinjiang. Overburden porosity and permeability experiments were conducted on oil shale cores. Three-dimensional visualization and quantitative analysis of the micropore structure of cores under different effective stresses were used to model the relationship between oil shale porosity, permeability, and effective stress. In addition, the stress sensitivity of oil shale reservoirs was analyzed, using the damage rates of permeability and stress sensitivity coefficients. The results indicated that in both regions, oil shale porosity and permeability exhibited a decreasing trend with increasing effective stress, following a negative exponential function. When the effective stress was less than 8 MPa, the permeability stress sensitivity coefficient decreased sharply. Once the effective stress exceeded 8 MPa, the stress sensitivity of permeability in both regions weakened, maintaining a range between 0.2 and 0.4 MPa–1. The results of three-dimensional visualization simulations were the same as the experimental results. Taken together, the results showed that the porosity of different-sized pores decreased with increased stress, which reflected the synergistic effect of different-sized pores on porosity in shale. This study has practical significance for revealing the variation in pore size in shale reservoirs and establishing the physical characteristics of oil shale reservoirs.


1. Järvik, O., Baird, Z. S., Rannaveski, R., Oja, V. Properties of kukersite shale oil. Oil Shale, 2021, 38(4), 265–294.

2. Baird, Z. S., Oja, V., Järvik, O. Distribution of hydroxyl groups in kukersite shale oil: quantitative determination using Fourier transform infrared (FT-IR) spectroscopy. Applied Spectroscopy, 2015, 69(5), 555–562.

3. Pikkor, H., Järvik, O., Lees, H., Konist, A., Siirde, A., Maaten, B. Characteri-zation and enhancement of oil shale fly ash from CFB boiler. In: 2021 6th International Conference on Smart and Sustainable Technologies, September 8–11, 2021, Bol and Split, Croatia. IEEE, 2021, 1–4.

4. Liu, Z., Ma, H., Wang, Z., Guo, Y., Li, W., Hou, Z. Experimental study on the thermophysical properties of Jimsar oil shale. Oil Shale, 2023, 40(3), 194–211.

5. Zhao, L., Cheng, Y., Zhang, Y. Pore and fracture scale characterization of oil shale at different microwave temperatures. Oil Shale, 2023, 40(2), 91–114.

6. Tan, X., Li, X., Liu, J., Zhang, L., Fan, Z. Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media. Physics Letters A, 2015, 379(39), 2458–2465.

7. Liu, Z., Yang, Y., Yao, J., Zhang, Q., Ma, J., Qian, Q. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology. Advances in Geo-Energy Research, 2017, 1(3), 171–181.

8. Wang, H., Ji, B., Lv, C., Zhang, L., Li, X., Cui, C., Yu, H., Nie, J. The stress sensitivity of permeability in tight oil reservoirs. Energy Exploration & Exploitation, 2019, 37(4), 1364–1376.

9. Biot, M. A. General theory of three-dimensional consolidation. Journal of Applied Physics, 1941, 12(2), 155–164.

10. Snow, D. T. Anisotropie permeability of fractured media. Water Resources Research, 1969, 5(6), 1273–1289.

11. Jones Jr, F. O. A laboratory study of the effects of confining pressure on fracture flow and storage capacity in carbonate rocks. Journal of Petroleum Technology, 1975, 27(01), 21–27.

12. McKee, C. R., Bumb, A. C., Koenig, R. A. Stress-dependent permeability and porosity of coal and other geologic formations. SPE Formation Evaluation, 1988, 3(01), 81–91.

13. Liu, J., Liu, X. The effect of effective pressure on porosity and permeability of low permeability porous media. Journal of Geomechanics,2001, 7(1), 41–44 (in Chinese).

14. Chang, Z., Zhao, Y., Hu, Y. Theoretical and experimental studies of the coupling of seepage flow and 3D stresses in fractured rock masses.Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2), 4907–4911 (in Chinese).

15. Walsh, J. B. Effect of pore pressure and confining pressure on fracture permeability. International Journal of Rock Mechanics and Mining Sciences, 1981, 18(5), 429–435.

16. Shi, Y., Wang, C. Y. Pore pressure generation in sedimentary basins: overloading versus aquathermal. Journal of Geophysical Research: Solid Earth, 1986, 91(B2), 2153–2162.

17. Katsube, T. J., Mudford, B. S., Best, M. E. Petrophysical characteristics of shales from the Scotian shelf. Geophysics, 1991, 56(10), 1681–1689.

18. Kwon, O., Kronenberg, A. K., Gangi, A. F., Johnson, B., Herbert, B. E. Perme-a-bility of illite-bearing shale: 1. Anisotropy and effects of clay content and loading. Journal of Geophysical Research: Solid Earth, 2004, 109(B10).

19. Zheng, J., Zheng, L., Liu, H., Ju, Y. Relationships between permeability, porosity and effective stress for low-permeability sedimentary rock. International Journal of Rock Mechanics and Mining Sciences, 2015, 78, 304–318.

20. Brower, K. R., Morrow, N. R. Fluid flow in cracks as related to low-permeability gas sands. Society of Petroleum Engineers Journal, 1985,25(02), 191–201.

21. Li, S., Tang, D., Pan, Z., Xu, H., Huang, W. Characterization of the stress sensitivity of pores for different rank coals by nuclear magnetic resonance. Fuel, 2013, 111, 746–754.

22. Chalmers, G. R., Ross, D. J. K., Bustin, R. M. Geological controls on matrix permeability of Devonian Gas Shales in the Horn River and Liard basins, northeastern British Columbia, Canada. International Journal of Coal Geology, 2012, 103, 120–131.

23. Ghanizadeh, A., Gasparik, M., Amann-Hildenbrand, A., Gensterblum, Y., Krooss, B. M. Experimental study of fluid transport processes in the matrix system of the European organic-rich shales: I. Scandinavian Alum Shale. Marine and Petroleum Geology, 2014, 51, 79–99.

24. Gensterblum, Y., Ghanizadeh, A., Cuss, R. J., Amann-Hildenbrand, A., Krooss, B. M., Clarkson, C. R., Harrington, J. F., Zoback, M. D. Gas transport and storage capacity in shale gas reservoirs – a review. Part A: Transport processes. Journal of Unconventional Oil and Gas Resources,2015, 12, 87–122.

25. Meng, Y., Li, Z., Lai, F. Experimental study on porosity and permeability of anthracite coal under different stresses. Journal of Petroleum Science and Engineering, 2015, 133, 810–817.

26. Jasinge, D., Ranjith, P. G., Choi, S. K. Effects of effective stress changes on permeability of Latrobe Valley brown coal. Fuel, 2011, 90(3), 1292–1300.

27. Liu, H., Sang, S., Feng, Q., Hu, B., Hu, Y., Xu, H., Cheng, Q. Study on stress sensitivity of coal reservoir during drainage of coal-bed methane well in Southern Qinshui Basin. Journal of China Coal Society, 2014, 39(9), 1873–1878.

28. Chen, G., Qin, Y., Yang, Q., Li, W. Different stress sensitivity of different coal rank reservoir permeability and its effect on the coalbed methane output. Journal of China Coal Society, 2014, 39(3), 504–509.

29. Peng, Y., Qi, Q., Deng, Z., Li, H. Experimental research on sensitivity of permeability of coal samples under confining pressure status based on scale effect. Journal of China Coal Society, 2008, 33.

30. Ostensen, R. W. The effect of stress-dependent permeability on gas production and well testing. SPE Formation Evaluation, 1986, 1(03), 227–235.

31. Li, M., Xiao, W. L., Guo, X., Zhang, L. H., Zheng, L. L. Laboratory study of the effective pressure law for permeability of the low-permeability sandstones from the Tabamiao area, Inner Mongolia. Chinese Journal of Geophysics, 2009, 52(6), 1402–1413.

32. Dou, H., Zhang, H., Yao, S., Zhu, D., Sun, T., Ma, S., Wang, X. Measurement and evaluation of the stress sensitivity in tight reservoirs. Petroleum Exploration and Development, 2016, 43(6), 1116–1123.

33. Feng, Y., Tang, H., Tang, H., Tang, H., Leng, Y., Shi, X., Liu, J., Wang, Z., Deng, C. Influence of geomechanics parameters on stress sensitivity in fractured reservoir. Frontiers in Earth Science, 2023, 11, 1134260.

34. Chen, D., Pan, Z., Ye, Z. Dependence of gas shale fracture permeability on effective stress and reservoir pressure: model match and insights. Fuel, 2015, 139, 383–392.

35. Zhao, X., Yang, Z., Wang, Z., Lin, W., Xiong, S., Luo, Y., Niu, Z., Xia, D. An experimental study on stress sensitivity of tight sandstones with different microfractures. Advances in Civil Engineering, 2020, 2020, 1865464.

36. Guo, P., Deng, L., Liu, Q., Zhang, M., Wang, Z. Test and application of multiple stress sensitivity of low permeability gas reservoir. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(2), 78–82.

37. Xie, S., Jiao, C., He, S., Xie, Q., Gu, D., Zhu, H., Sun, L., Liu, H. An experi-mental study on stress-dependent sensitivity of ultra-low permeability sandstone reservoirs. Acta Petrolei Sinica, 2011, 32, 489–494.

38. Kilmer, N. H., Morrow, N. R., Pitman, J. K. Pressure sensitivity of low permea-bility sandstones. Journal of Petroleum Science and Engineering, 1987, 1(1), 65–81.

39. Wang, H., Liao, X., Lu, N., Cai, Z., Liao, C., Dou, X. A study on development effect of horizontal well with SRV in unconventional tight oil reservoir. Journal of the Energy Institute, 2014, 87(2), 114–120.

40. Aybar, U., Yu, W., Eshkalak, M. O., Sepehrnoori, K., Patzek, T. Evaluation of production losses from unconventional shale reservoirs. Journal of Natural Gas Science and Engineering, 2015, 23, 509–516.

41. Liao, J., Tang, H., Zhu, X., Li, G., Zhao, F., Lin, D. Study on stress sensitivity in ultra-low permeability sandstone reservoir of Chang 8 oil formation in Xifeng Oilfield based on microscopic methods. Journal of China University of Petroleum, 2012, 36(2), 27–33.

42. Ruan, M., Wang, L. Low-permeability oilfield development and pressure-sensitive effect. Acta Petrolei Sinica, 2002, 23(3), 73–76.

43. Vairogs, J., Hearn, C. L., Dareing, D. W., Rhoades, V. W. Effect of rock stress on gas production from low-permeability reservoirs. Journal of Petroleum Technology, 1971, 23(09), 1161–1167.

44. David, C., Wong, T., Zhu, W., Zhang, J. Laboratory measurement of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure and Applied Geophysics, 1994, 143, 425–456.

45. Zhao, H., Ning, Z., Zhao, T., Zhang, R., Wang, Q. Effects of mineralogy on petrophysical properties and permeability estimation of the Upper Triassic Yanchang tight oil sandstones in Ordos Basin, Northern China. Fuel, 2016, 186, 328–338.

46. Mavko, G. M., Nur, A. The effect of nonelliptical cracks on the compressibility of rocks. Journal of Geophysical Research: Solid Earth, 1978,83(B9), 4459–4468.

47. Zhang, R., Ning, Z., Yang, F., Wang, X., Zhao, H., Wang, Q. Impacts of nanopore structure and elastic properties on stress-dependent permeability of gas shales. Journal of Natural Gas Science and Engineering, 2015, 26, 1663–1672.

48. Zhang, R., Ning, Z., Yang, F., Zhao, H., Wang, Q. A laboratory study of the porosity-permeability relationships of shale and sandstone under effective stress. International Journal of Rock Mechanics and Mining Sciences, 2016, 81, 19–27.

49. Zhang, W., Wang, Q., Ning, Z., Zhang, R., Huang, L., Cheng, Z. Relationship between the stress sensitivity and pore structure of shale. Journal of Natural Gas Science and Engineering, 2018, 59, 440–451.

50. Wang, H., Ji, B., Lv, C., Zhang, L., Li, X., Cui, C., Yu, H., Nie, J. The stress sensitivity of permeability in tight oil reservoirs. Energy Exploration & Exploitation, 2019, 37(4), 1364–1376.

51. Zhang, L., Wang, M., Shan, G., Pan, B. Experiment study on overburden porosity and permeability of volcanic rocks in Changling fault depression and its correction method. World Geology, 2022, 41(01), 147–152 (in Chinese).

52. Huang, Q. A Comparative Study on the Mechanical Strength and Pressure Pore Permeability of Different Coal Rank. Master’s thesis. Taiyuan University of Technology, Taiyuan, 2020 (in Chinese).

53. Yao, S., Dou, H., Chen, J., Ran, Q., Zhang, H., Ma, S. Discussion on the evaluation method standard of reservoir sensitivity flow experiment. Technology Supervision in Petroleum Industry, 2017, 33(12), 26–29 (in Chinese).

Back to Issue