ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
The composition of kukersite shale oil; pp. 25–43
PDF | https://doi.org/10.3176/oil.2023.1.02

Authors
Zachariah Steven Baird, Vahur Oja, Oliver Järvik
Abstract

Pyrolysis oils are usually considered as substitutes for crude oil; however, they can also be sources of valuable compounds. One such pyrolysis oil is shale oil obtained by pyrolysis of kukersite oil shale. Kukersite shale oil consists mainly of aromatic rings with straight alkyl side chains. For samples with comparable boiling point distributions, kukersite shale oil has a higher proportion of aromatic rings than petroleum and many other shale oils. Sulfur, nitrogen, and oxygen are often incorporated into the ring structures, with much of the oxygen also present as phenolic hydroxyl groups.

To evaluate the potential for producing some specific compounds from kukersite shale oil foundational data on the composition is needed. In this article, new experimental data on the elemental composition and infrared spectrum of kukersite shale oil is analyzed to investigate its composition. To get detailed information on how the composition of the oil changes depending on the average molecular weight of the oil fraction, the shale oil was separated into narrow boiling fractions using distillation. This gives more detailed data on different portions of the oil than earlier datasets. Additionally, this data is for oil produced from newer solid heat carrier retorts. The results show that the nitrogen content in kukersite shale oil increases with the boiling temperature, with the heaviest fractions containing about 0.3 wt%. Sulfur content reaches a maximum of almost 2 wt% for fractions boiling between 150 and 190 °C, and heavier fractions contain about 0.7 wt%. Similarly, the proportion of hydroxyl groups in kukersite shale oil peaks in the fraction boiling at about 320 °C, with heavier fractions containing more aromatic and alkyl functional groups. The elemental composition of kukersite shale oil is also compared to that of other shale oils.

References

1. World Energy Council. World Energy Resources: 2013 Survey. World Energy Council, London, 2013.

2. Bartis, J. T., LaTourrette, T., Dixon, L., Peterson, D. J., Cecchine, G. Oil Shale Development in the United States: Prospects and Policy Issues. Rand Corporation, 2005.

3. IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014. 
https://www.ipcc.ch/report/ar5/syr/ (accessed: Nov. 01, 2019).

4. PETROBRAS. Shale Industrialization Unit (SIX)
https://petrobras.com.br/en/our-activities/main-operations/refineries/shale-industrialization-unit-six.htm (accessed Aug. 24, 2021).

5. Nikolajev, J. Eesti Energia uus õlitehas sai nurgakivi. ERR, Nov. 16, 2021 (in Estonian). 
https://www.err.ee/1608404858/eesti-energia-uus-olitehas-sai-nurgakivi (accessed Jan. 26, 2022).

6. Lee, S. Oil Shale Technology. CRC Press, 1990.

7. Oja, V., Suuberg, E. M. Oil shale processing, chemistry and technology. In: Encyclopedia of Sustainable Science and Technology (Meyers, R. A., ed.). Springer-Verlag, New York, 2012, 7457–7491.
https://doi.org/10.1007/978-1-4419-0851-3_102

8. Kogerman, P. N. On the Chemistry of the Estonian Oil Shale “Kukersite.” Oil Shale Research Laboratory, Tartu, Estonia, 1931.

9. Baird, Z. S., Oja, V., Järvik, O. Distribution of hydroxyl groups in kukersite shale oil: Quantitative determination using Fourier transform infrared (FT-IR) spectroscopy. Appl. Spectrosc., 2015, 69(5), 555–562. 
https://doi.org/10.1366/14-07705

10. Neshumayev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113.
https://doi.org/10.3176/oil.2019.2S.02

11. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324–332.
https://doi.org/10.3176/oil.2003.3S.05

12. Järvik, O., Baird, Z. S., Rannaveski, R., Oja, V. Properties of kukersite shale oil. Oil Shale, 2021, 38(4), 265–294.
https://doi.org/10.3176/oil.2021.4.01

13. Mozaffari, S., Järvik, O., Baird, Z. Sulfur in kukersite shale oil: its distribution in shale oil fractions and the effect of gaseous environment. OSF Prepints, Nov. 23, 2021, 
https://doi.org/10.31219/osf.io/b8x6w

J. Therm. Anal. Calorim., 2022, 147(20), 11601–11610. 
https://doi.org/10.1007/s10973-022-11359-8

14. Järvik, O., Oja, V. Molecular weight distributions and average molecular weights of pyrolysis oils from oil shales: Literature data and measurements by size exclusion chromatography (SEC) and atmospheric solids analysis probe mass spectroscopy (ASAP MS) for oils from four different deposits. Energy Fuels, 2016, 31(1), 328–339.
https://doi.org/10.1021/acs.energyfuels.6b02452

15. RDKit: Open-Source Cheminformatics Software
http://www.rdkit.org/ (accessed Mar. 02, 2020). 

16. Ertl, P., Rohde, B., Selzer, P. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. J. Med. Chem., 2000, 43(20), 3714–3717.
https://doi.org/10.1021/jm000942e

17. Baird, Z. S. Predicting Fuel Properties from Infrared Spectra. PhD thesis, Tallinn University of Technology, TUT Press, Tallinn, Estonia, 2017.
https://doi.org/10.31237/osf.io/zun8c

18. Aarna, A., Paluoja, V. Determination of hydroxyl groups in shale oil by the acetylation method. In: Analytical Methods for Oil Shale and Oil Shale Products. 1961, Tallinn, Estonia, 23–26 (in Russian).

19. Coates, J. Interpretation of infrared spectra, a practical approach. In: Encyclopedia of Analytical Chemistry (Meyers, R. A., ed.). John Wiley & Sons, Ltd., 2006.
https://doi.org/10.1002/9780470027318.a5606

20. Gubergrits, M. J., Rohtla, I., Elenurm, A., Myasoyedov, A. M. Comparison of light oil products from oil shale retorting in solid heat carrier units UTT-3000 and UTT-500 (in Russian). Oil Shale, 1989, 6(2), 189–194.
https://doi.org/10.3176/oil.1989.2.10

21. Miknis, F. P. Characterization of DOE Reference Oil Shale: Tipton Member, Green River Formation Oil Shale From Wyoming. Topical Report. Western Research Institute, Laramie, WY, USA, DOE/MC/11076-2676, 1988.
https://doi.org/10.2172/6159172

22. Miknis, F. P., Robertson, R. E. Characterization of Doe Reference Oil Shales: Mahogany Zone, Parachute Creek Member, Green River Formation Oil Shale, and Clegg Creek Member, New Albany Shale. Technical Report. Western Research Inst., Laramie, WY, USA, DOE/MC/11076-2448, 1987. 
http://www.osti.gov/scitech/biblio/5535457 (accessed Dec. 01, 2016).
https://doi.org/10.2172/5535457

23. Lovell, P. F. Production of Utah Shale oils by the Paraho DH and Union ‘B’ retorting processes. In: Eleventh Oil Shale Symposium Proceedings (Gary, J. H., ed.). Colorado School of Mines Press, Golden, Colorado, 1978, 184–192.

24. Hill, G. R., Dougan, P. The characteristics of a low temperature in situ shale oil. 96th Annual AIME Meeting, Los Angeles, Calif., Feb. 19–23, 1967.
https://doi.org/10.2118/1745-MS

25. Bunger, J. W. Shale Oil Value Enhancement Research. James W. Bunger and Associates, Inc., Salt Lake City, UT, USA, 2007.

26. Qian, J., Yin, L. Oil Shale: Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

27. Marecaux, P. P. Essais de valorisatsion integrale des huiles de schiste de Severac. In: Oil Shale and Cannel Coal, 1951, 2, Institute of Petroleum, London, WI, USA, 673–689.

28. Gray, J. A., Brady, C. J., Cunningham, J. R., Freeman, J. R., Wilson Grant, M. Thermophysical properties of coal liquids. 1. Selected physical, chemical, and thermodynamic properties of narrow boiling range coal liquids. Ind. Eng. Chem. Process Des. Dev., 1983, 22(3), 410–424.
https://doi.org/10.1021/i200022a012

29. James G. Speight. Crude Oil Assay Database. Knovel, 2015. 
https://app.knovel.com/web/toc.v/cid:kpCOAD0005/viewerType:toc/root_slug:crude-oil-assay-database/url_slug:crude-oil-assay-database (accessed Sep. 23, 2016).

30. Derenne, S., Largeau, C., Casadevall, E., Sinninghe Damsté, J. S., Tegelaar, E. W., de Leeuw, J. W. Characterization of Estonian Kukersite by spectroscopy and pyrolysis: Evidence for abundant alkyl phenolic moieties in an Ordovician, marine, type II/I kerogen. Org. Geochem., 1990, 16(4–6), 873–888.
https://doi.org/10.1016/0146-6380(90)90124-I

31. Cady, W. E., Seelig, H. S. Composition of shale oil. Ind. Eng. Chem., 1952, 44(11), 2636–2641. 
https://doi.org/10.1021/ie50515a044

32. Zelenin, N. I., Fainberg, V. S., Chernysheva, K. B. The Chemistry and Technology of Shale Oil. Chemistry Publishing House, Leningrad, 1968 (in Russian).

33. Riazi, M. R. Characterization and Properties of Petroleum Fractions. ASTM International, 2005.
https://doi.org/10.1520/MNL50_1ST-EB

34. Mapstone, G. E. Density-temperature relationships of shale oil products. In: Oil Shale and Cannel Coal. 1951, 2, London, WI, USA: Institute of Petroleum, 710–712.

35. Dinneen, G. U., Allbright, C. S., Ball, J. S. Comparison of Brazilian and Colorado shale oils. Ind. Eng. Chem. Chem. Eng. Data Series, 1956, 2(1), 91–95.
https://doi.org/10.1021/i460002a026

36. Eesti Energia, Viru Keemia Grupp, Oil Shale Competence Center at the Taltech Virumaa College. Estonian Oil Shale Industry Yearbook 2019 (Oone, A., ed.). 
https://haldus.taltech.ee/sites/default/files/2021-04/VK_eesti_polevkivitoostuse_aastaraamat_en_2019.pdf?_ga=2.94444828.1831482186.1629698087-2065338881.1627903036 (accessed Aug. 23, 2021).

37. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799–804.
https://doi.org/10.1016/S0016-2361(02)00358-7

Back to Issue