eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2021): 1.442
Three-dimensional molecular modeling of Dachengzi oil shale kerogen; pp. 124–141
PDF | 10.3176/oil.2022.2.03

Xiaoye Wang, Xiangxin Han, Jianhui Tong, Yulong You, Xiumin Jiang

A three-dimensional (3D) molecular model of Dachengzi oil shale kerogen was constructed using quantitative 13C direct polarization/magic angle spinning solid-state nuclear magnetic resonance (DP/MAS SSNMR) data and accurate quantum chemistry methods. The heteroatom-containing functional groups were carefully identified using X-ray photoelectron spectroscopy (XPS) and pyrolysis experimental data. A large portion of C487H778O43N8S5 was selected for the model to introduce more types of functional groups and make the model representative. The carbon unit fractions, structural parameters and atomic ratios of the model well matched with the experimental data. The equilibrium structure was obtained by geometry optimization using the density functional theory (DFT) method at the B3LYP/STO-3G level of theory and validated by frequency calculations at the same level. The final geometry is an incompact structure containing a large number of branches, which well reflects the cross-linked molecular structure of the kerogen. The simulated 13C NMR spectrum was generated using quantum chemical calculations at the B3LYP/6-31G(d) level. The simulated spectrum is in good agreement with the experimental spectrum, indicating the validity and reliability of the model.


1. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. Springer-Verlag, New York, 1984.

2. Knaus, E., Killen, J., Biglarbigi, K., Crawford, P. An overview of oil shale resources. In: Oil Shale: A Solution to the Liquid Fuel Dilemma(Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.). ACS Symposium Series, 1032, American Chemical Society, Washington, DC, 2010, 3‒20.

3. Vandenbroucke, M., Largeau, C. Kerogen origin, evolution and structure. Org. Geochem., 2007, 38(5), 719‒833.

4. Tong, J. H., Han, X. X., Wang, S., Jiang, X. M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energy Fuels, 2011, 25(9), 4006‒4013.

5. Fletcher, T. H., Gillis, R., Adams, J., Hall, T., Mayne, C. L., Solum, M. S., Pugmire, R. J. Characterization of macromolecular structure elements from a Green River oil shale, II. Characterization of pyrolysis products by 13C NMR, GC/MS, and FTIR. Energy Fuels, 2014, 28(5), 2959‒2970.

6. Kelemen, S. R., Freund, H., Gorbaty, M. L., Kwiatek, P. J. Thermal chemistry of nitrogen in kerogen and low-rank coal. Energy Fuels, 1999, 13(2), 529‒538.

7. Kelemen, S. R., Afeworki, M., Gorbaty, M. L., Sansone, M., Kwiatek, P. J., Walters, C. C., Freund, H., Siskin, M., Bence, A. E., Curry, D. J., Solum, M., Pugmire, R. J., Vandenbroucke, M., Leblond, M., Behar, F. Direct charac-teri-zation of kerogen by X-ray and solid-state 13C nuclear magnetic resonance methods. Energy Fuels, 2007, 21(3), 1548‒1561.

8. Bansal, V. R., Kumar, R., Sastry, M. I. S., Badhe, R. M., Kapur, G. S., Saxena, D. Direct estimation of shale oil potential by the structural insight of Indian origin kerogen. Fuel, 2019, 241, 410‒416.

9. Wind, R. A., Maciel, G. E., Botto, R. E. Quantitation in 13C NMR spectroscopy of carbonaceous solids. In: Magnetic Resonance of Carbonaceous Solids (Botto, R. E., Sanada, Y., eds.). ACS Advances in Chemistry, No. 229, American Chemical Society, Washington, DC, 1992, 3‒26.

10. Smernik, R. J., Schwark, L., Schmidt, M. W. I. Assessing the quantitative reliability of solid-state 13C NMR spectra of kerogens across a gradient of thermal maturity. Solid State Nucl. Magn. Reson., 2006, 29(4), 312‒321.

11. Mao, J. D., Fang, X. W., Lan, Y. Q., Schimmelmann, A., Mastalerz, M., Xu, L., Schmidt-Rohr, K. Chemical and nanometer-scale structure of kerogen and its change during thermal maturation investigated by advanced solid-state 13C NMR spectroscopy. Geochim. Cosmochim. Acta, 2010, 74(7), 2110‒2127.

12. Gao, Y., Zou, Y. R., Liang, T., Peng, P. A. Jump in the structure of Type I kerogen revealed from pyrolysis and 13C DP MAS NMR. Org. Geochem., 2017, 112, 105‒118.

13. Yen, T. F. Structural aspects of organic components in oil shales. In: Developments in Petroleum Science (Yen, T. F., Chilingarian, G. V., eds.). Elsevier, Oxford, 1976, 5, 129‒148.

14. Behar, F., Vandenbroucke, M. Chemical modelling of kerogens. Org. Geochem., 1987, 11(1), 15‒24.

15. Siskin, M., Scouten, C. G., Rose, K. D., Aczel, T., Colgrove, S. G., Pabst Jr., R. E. Detailed structural characterization of the organic material in Rundle Ramsay Crossing and Green River oil shales. In: Composition, Geochemistry and Conversion of Oil Shales (Snape, C. E., ed.). Springer Netherlands, Dordrecht, 1995, 143‒158.

16. Lille, Ü., Heinmaa, I., Pehk, T. Molecular model of Estonian kukersite kerogen evaluated by 13C MAS NMR spectra. Fuel, 2003, 82(7), 799‒804.

17. Wang, Q., Hou, Y. C., Wu, W. Z., Yu, Z., Ren, S. H., Liu, Q. Y., Liu, Z. Y. A study on the structure of Yilan oil shale kerogen based on its alkali-oxygen oxidation yields of benzene carboxylic acids, 13C NMR and XPS. Fuel Process. Technol., 2017, 166, 30‒40.

18. Huang, Z. K., Liang, T., Zhan, Z. W., Zou, Y. R., Li, M. W., Peng, P. A. Chemical structure evolution of kerogen during oil generation. Mar. Petrol. Geol., 2018, 98, 422‒436.

19. Chu, W. Y., Cao, X. Y., Schmidt-Rohr, K., Birdwell, J. E., Mao, J. D. Investigation into the effect of heteroatom content on kerogen structure using advanced 13C solid-state nuclear magnetic resonance spectroscopy. Energy Fuels, 2019, 33(2), 645‒653.

20. Orendt, A. M., Pimienta, I. S. O., Badu, S. R., Solum, M. S., Pugmire, R. J., Facelli, J. C., Locke, D. R., Chapman, K. W., Chupas, P. J., Winans, R. E. Three-dimensional structure of the Siskin Green River oil shale kerogen model: A comparison between calculated and observed properties. Energy Fuels, 2013, 27(2), 702‒710.

21. Katti, D. R., Thapa, K. B., Katti, K. S. Modeling molecular interactions of sodium montmorillonite clay with 3D kerogen models. Fuel, 2017, 199, 641‒652.

22. Ungerer, P., Collell, J., Yiannourakou, M. Molecular modeling of the volumetric and thermodynamic properties of kerogen: Influence of organic type and maturity. Energy Fuels, 2015, 29(1), 91‒105.

23. Bousige, C., Ghimbeu, C. M., Vix-Guterl, C., Pomerantz, A. E., Suleimenova, A., Vaughan, G., Garbarino, G., Feygenson, M., Wildgruber, C., Ulm, F.-J., Pellenq, R. J. M., Coasne, B. Realistic molecular model of kerogen’s nanostructure. Nat. Mater., 2016, 15(5), 576‒582.

24. Tong, J. H., Jiang, X. M., Han, X. X., Wang, X. Y. Evaluation of the macromolecular structure of Huadian oil shale kerogen using molecular modeling. Fuel, 2016, 181, 330‒339.

25. Guan, X. H., Liu, Y., Wang, D., Wang, Q., Chi, M. S., Liu, S., Liu, C. G. Three-dimensional structure of a Huadian oil shale kerogen model: An experimental and theoretical study. Energy Fuels, 2015, 29(7), 4122‒4136.

26. Razvigorova, M., Budinova, T., Tsyntsarski, B., Petrova, B., Ekinci, E., Atakul, H. The composition of acids in bitumen and in products from saponification of kerogen: Investigation of their role as connecting kerogen and mineral matrix. Int. J. Coal Geol., 2008, 76(3), 243‒249.

27. Marzec, A. Intermolecular interactions of aromatic hydrocarbons in carbonaceous materials: A molecular and quantum mechanics. Carbon,2000, 38(13), 1863‒1871.

28. Tesson, S., Firoozabadi, A. Methane adsorption and self-diffusion in shale kerogen and slit nanopores by molecular simulations. J. Phys. Chem. C, 2018, 122(41), 23528‒23542.

29. Xu, F., Liu, H., Wang, Q., Pan, S., Zhao, D., Liu, Q., Liu, Y. ReaxFF-based molecular dynamics simulation of the initial pyrolysis mechanism of lignite. Fuel Process. Technol., 2019, 195, 106147.

30. Pan, S., Wang, Q., Bai, J. R., Chi, M. S., Cui, D., Wang, Z. C., Liu, Q., Xu, F. Molecular structure and electronic properties of oil shale kerogen: An experimental and molecular modeling study. Energy Fuels, 2018, 32(12), 12394‒12404.

31. Zou, C. Y., Raman, S., van Duin, A. C. T. Large-scale reactive molecular dynamics simulation and kinetic modeling of high-temperature pyrolysis of the Gloeocapsomorphaprisca microfossils. J. Phys. Chem. B, 2014, 118(23), 6302‒6315.

32. Zhu, Y. Q., Su, H., Jing, Y., Guo, J. C., Tang, J. L. Methane adsorption on the surface of a model of shale: A density functional theory study. Appl. Surf. Sci., 2016, 387, 379‒384.

33. Zhang, H., Liu, J. X., Wang, X. Y., Jiang, X. M. Density functional theory study on two different oxygen enhancement mechanisms during NO–char interaction. Combust. Flame, 2016, 169, 11‒18.

34. Rogel, E. Simulation of interactions in asphaltene aggregates. Energy Fuels, 2000, 14(3), 566‒574.

35. Wang, X. Y., You, Y. L., Mu, M., Han, X. X., Shu, J., Jiang, X. M. Structural characterization of Huadian oil shale kerogen by using 13C DP/MAS NMR. Oil Shale, 2021, 38(3), 181‒198.

36. Tong, J. H. Behavior and Mechanism of Transformation of Nitrogen and Sulfur Elements in Oil Shale in the Course of Comprehensive Utilization. PhD dissertation. Shanghai Jiao Tong University, 2013 (in Chinese).

37. Jiang, X. M., Yu, L. J., Yan, C., Han, X. X., Yan, H. L. Experimental investigation of SO2 and NOx emissions from Huadian oil shale during circulating fluidized-bed combustion. Oil Shale, 2004, 21(3), 249‒257.

38. Tong, J. H., Liu, J. G., Han, X. X., Wang, S., Jiang, X. M. Characterization of nitrogen-containing species in Huadian shale oil by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2013, 104, 365‒371.

39. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, Jr., J. A., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009.

40. Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38(6), 3098‒3100.

41. Lee, C., Yang, W., Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B: Condens. Matter, 1988, 37(2), 785‒789.

42. Miehlich, B., Savin, A., Stoll, H., Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200‒206.

43. Hehre, W. J., Stewart, R. F., Pople, J. A. Self-consistent molecular-orbital methods. I. Use of gaussian expansions of slater-type atomic orbitals. J. Chem. Phys., 1969, 51(6), 2657‒2664.

44. Collins, J. B., von R. Schleyer, P., Binkley, J. S., Pople, J. A. Self-consistent molecular orbital methods. XVII. Geometries and binding energies of second-row molecules. A comparison of three basis sets. J. Chem. Phys., 1976, 64(12), 5142‒5151.

45. Han, X. X., Jiang, X. M., Cui, Z. G., Liu, J. G., Yan, J. W. Effects of retorting factors on combustion properties of shale char. 3. Distribution of residual organic matters. J. Hazard. Mater., 2010, 175(1‒3), 445‒451.

46. Burnham, A. K., Bey, N. K., Koskinas, G. J. Hydrogen sulfide evolution from Colorado oil shale. In: Oil Shale, Tar Sands, and Related Materials (Stauffer, H. C., ed.). ACS Symposium Series, 163, American Chemical Society, Washington, DC, 1981, 61‒77.

47. Davis, F. A., Panunto, T. W., Awad, S. B., Billmers, R. L., Squires, T. G. Pyrolysis of organic compounds. 1. Flash vacuum pyrolysis (FVP) of coal-model organic sulfides and their S-oxides. J. Org. Chem., 1984, 49(7), 1228‒1230.

48. Silverstein, R. M., Webster, F. X., Kiemle, D. J. Spectrometric Identification of Organic Compounds. 7th ed.; John Wiley & Sons, Inc., New York, 2005.

Back to Issue