ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

Carbon dioxide sequestration in power plant Ca-rich ash waste deposits; pp. 65–88

Full article in PDF format | 10.3176/oil.2021.1.04

Authors
Kristjan Leben, Riho Mõtlep, Alar Konist, Tõnu Pihu, Kalle Kirsimäe

Abstract

In order to reach future goals of net carbon neutrality and climate change mitigation, various carbon capture and sequestration techniques must be implemented. Industrial waste rich in chemically active alkaline metal oxides is considered as a potential material for CO2 sequestration. The authors studied the long-term CO2 binding capacity of Ca-rich oil shale ash (OSA) deposits at oil shale(OS)-fired power plants of Estonia and estimated the remaining sequestration potential for in-situ carbonation. Providing energy security, the Estonian oil shale industry is the biggest national producer of solid waste and the leading greenhouse gas emitter, making the country one of the largest per capita producers of CO2 in Europe. The study shows that ash deposits are currently only partially carbonated, with an average CO2 binding rate of 51 kg per tonne of hydrated sediment, most of which being bound in such carbonate minerals as calcite and vaterite, as well as in Ca-silicate thaumasite. It is estimated that at full carbonation of reactive Ca and Mg phases in ash (portlandite, ettringite and semicrystalline C-S-H), the projected average total CO2 binding potential could rise to ca 200 kg per tonne of ash.


References

1. Horowitz, C. AParis AgreementInt. Leg. Mater., 2016, 55(4), 740–755.
https://doi.org/10.1017/S0020782900004253

2. European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions, 2019.

3. Aminu, M. D., Nabavi, S. A., Rochelle, C. A., Manovic, V. A review of developments in carbon dioxide storage. Appl. Energy, 2017, 208, 1389–1419.
https://doi.org/10.1016/j.apenergy.2017.09.015

4. Bui, M., Adjiman, C. S., Bardow, A., Anthony, E. J., Boston, A., Brown, S., Fennell, P. S., Fuss, S., Galindo, A., Hackett, L. A., Hallett, J. P., Herzog, H. J., Jackson, G., Kemper, J., Krevor, S., Maitland, G. C., Matuszewski, M., Metcalfe, I. S., Petit, C., Puxty, G., Reimer, J., Reiner, D. M., Rubin, E. S., Scott, S. A., Shah, N., Smit, B., Trusler, J. P. M., Webley, P., Wilcox, J., Dowell, N. M. Carbon capture and storage (CCS): the way forward. Energy Environ. Sci., 2018, 11(5), 1062–1176.
https://doi.org/10.1039/C7EE02342A

5. IPCC. Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Metz, B., Davidson, O. R., Bosch, PR., DaveR., MeyerL.A., eds.), Cambridge University PressCambridgeUnited Kingdom and New YorkNYUSA, 2007, 851 pp.

6. IPCC. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change (Metz, B., Davidson, O., de Coninck, H. C., Loos, M., Meyer, L. A., eds.). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2005, 442 pp.

7. Sanna, A., Uibu, M., Caramanna, G., Kuusik, R., Maroto-Valer, M. M. A review of mineral carbonation technologies to sequester CO2Chem. Soc. Rev., 2014, 43, 8049–8080.
https://doi.org/10.1039/C4CS00035H

8. Yamasaki, A. An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. J. Chem. Eng. Japan, 2003, 36(4), 361–375.
https://doi.org/10.1252/jcej.36.361

9. Oskierski, H. C., Dlugogorski, B. Z., Jacobsen, G. Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: Quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem. Geol., 2013, 358, 156–169.
https://doi.org/10.1016/j.chemgeo.2013.09.001

10. Pronost, J., Beaudoin, G., Tremblay, J., Larachi, F., Duchesne, J., Hébert, R., Constantin, M. Carbon sequestration kinetic and storage capacity of ultramafic mining waste. Environ. Sci. Technol., 2011, 45(21), 9413–9420.
https://doi.org/10.1021/es203063a

11. Wilson, S. A., Harrison, A. L., Dipple, G. M., Power, I. M., Barker, S. L. L., Ulrich Mayer, K., Fallon, S. J., Raudsepp, M., Southam, G. Offsetting of CO2 emissions by air capture in mine tailings at the Mount Keith Nickel Mine, Western Australia: Rates, controls and prospects for carbon neutral mining. Int. J. Greenh. Gas Control, 2014, 25, 121–140.
https://doi.org/10.1016/j.ijggc.2014.04.002

12. Bobicki, E. R., Liu, Q., Xu, Z., Zeng, H. Carbon capture and storage using alkaline industrial wastes. Prog. Energy Combust. Sci., 2012, 38(2), 302–320.
https://doi.org/10.1016/j.pecs.2011.11.002

13. Olajire, A. A. A review of mineral carbonation technology in sequestration of CO2J. Pet. Sci. Eng., 2013, 109, 364–392.
https://doi.org/10.1016/j.petrol.2013.03.013

14. Pan, S. Y., Chang, E. E., Chiang, P. C. CO2 capture by accelerated carbonation of alkaline wastes: A review on its principles and applications. Aerosol Air Qual. Res., 2012, 12(5), 770–791.
https://doi.org/10.4209/aaqr.2012.06.0149

15. Montes-Hernandez, G., Pérez-López, R., Renard, F., Nieto, J.-M., Charlet, L. Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J. Hazard. Mater., 2009, 161(2–3), 1347–1354.
https://doi.org/10.1016/j.jhazmat.2008.04.104

16. Statistics Estonia. Statistical Yearbook of Estonia 2016 (Põder, K., ed.). Tallinn, 2016.

17. Crippa, M., Oreggioni, G., Guizzardi, D., Muntean, M., Schaaf, E., Lo Vullo, E., Solazzo, E., Monforti-Ferrario, F., Olivier, J., Vignati, E. Fossil CO2 and GHG emissions of all world countries. Publications Office of the European Union, Luxembourg, 2019.

18. Eesti Energia. Annual Report 2019. Environmental Report. 
https://www.energia.ee/-/doc/8644186/ettevottest/aastaaruanne/pdf/EE_AA_2019_ENG.pdf (accessed 13 May 2020).

19. Elering. Estonian long-term power scenarios. Tallinn, 2014. 
https://elering.ee/sites/default/files/attachments/Estonian-Long-term-Energy-Scenarios.pdf (accessed 13 May 2020).

20. Ots, A. Oil Shale Fuel Combustion. Tallinna Raamatutrükikoda. Tallinn, 2006.

21. Mõtlep, R., Sild, T., Puura, E., Kirsimäe, K. Composition, diagenetic transformation and alkalinity potential of oil shale ash sediments. J. Hazard. Mater., 2010, 184(1–3), 567–573.
https://doi.org/10.1016/j.jhazmat.2010.08.073

22. Konist, A., Maaten, B., Loo, L., Neshumayev, D., Pihu, T. Mineral sequestration of CO2 by carbonation of Ca-rich oil shale ash in natural conditions. Oil Shale, 2016, 33(3), 248–259.
https://doi.org/10.3176/oil.2016.3.04

23. Gavrilova, O., Randla, T., Vallner, L., Strandberg, M., Vilu, R. Life Cycle Analysis of the Estonian Oil Shale Industry. Estonian Fund for Nature, Tallinn University of Technology, Tallinn, 2005, 145 pp.

24. Loo, L., Konist, A., Neshumayev, D., Pihu, T., Maaten, B., Siirde, A. Ash and flue gas from oil shale oxy-fuel circulating fluidized bed combustion. Energies, 2018, 11(5), 1218.
https://doi.org/10.3390/en11051218

25. Arro, H., Prikk, A., Pihu, T. Calculation of CO2 emission from CFB boilers of oil shale power plants. Oil Shale, 2006, 23(4), 356–365.

26. Shogenova, A., Shogenov, K., Pomeranceva, R., Nulle, I., Neele, F., Hendriks, C. Economic modelling of the capture–transport–sink scenario of industrial CO2 emissions: The Estonian–Latvian cross-border case study. Energy Procedia, 2011, 4, 2385–2392.
https://doi.org/10.1016/j.egypro.2011.02.131

27. Shogenova, A., Sliaupa, S., Vaher, R., Shogenov, K., Pomeranceva, R. The Baltic Basin: structure, properties of reservoir rocks, and capacity for geological storage of CO2Est. J. Earth Sci., 2009, 58(4), 259–267.
https://doi.org/10.3176/earth.2009.4.04

28. Pihu, T., Konist, A., Puura, E., Liira, M., Kirsimäe, K. Properties and environmental impact of oil shale ash landfills. Oil Shale, 2019, 36(2), 257–270.
https://doi.org/10.3176/oil.2019.2.01

29. Leben, K., Mõtlep, R., Paaver, P., Konist, A., Pihu, T., Paiste, P., Heinmaa, I., Nurk, G., Anthony, E. J., Kirsimäe, K. Long-term mineral transformation of Ca-rich oil shale ash waste. Sci. Total Environ., 2019, 658, 1404–1415. 
https://doi.org/10.1016/j.scitotenv.2018.12.326

30. Uibu, M., Kuusik, R. Main physicochemical factors affecting the aqueous carbonation of oil shale ash. Miner. Eng., 2014, 59, 64–70.
https://doi.org/10.1016/j.mineng.2013.10.013

31. Kuusik, R., Veskimäe, H., Kaljuvee, T., Parts, O. Carbon dioxide binding in the heterogeneous systems formed by combustion of oil shale. 1. Carbon dioxide binding at oil shale ash deposits. Oil Shale, 2001, 18(2), 109–122.

32. Uibu, M., Uus, M., Kuusik, R. CO2 mineral sequestration in oil-shale wastes from Estonian power production. J. Environ. Manage., 2009, 90(2), 1253–1260.
https://doi.org/10.1016/j.jenvman.2008.07.012

33. Pihu, T., Arro, H., Prikk, A., Rootamm, R., Konist, A., Kirsimäe, K., Liira, M., Mõtlep, R. Oil shale CFBC ash cementation properties in ash fields. Fuel, 2012, 93, 172–180.
https://doi.org/10.1016/j.fuel.2011.08.050

34. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324–332.

35. Bityukova, L., Mõtlep, R., Kirsimäe, K. Composition of oil shale ashes from pulverized firing and circulating fluidized-bed boiler in Narva Thermal Power Plants, Estonia. Oil Shale, 2010, 27(4), 339–353.
https://doi.org/10.3176/oil.2010.4.07

36. Liira, M., Kirsimäe, K., Kuusik, R., Mõtlep, R. Transformation of calcareous oil-shale circulating fluidized-bed combustion boiler ashes under wet conditions. Fuel, 2009, 88(4), 712–718.
https://doi.org/10.1016/j.fuel.2008.08.012

37. Chen, J. J., Thomas, J. J., Taylor, H. F. W., Jennings, H. M. Solubility and structure of calcium silicate hydrate. Cem. Concr. Res., 2004, 34(9), 1499–1519.
https://doi.org/10.1016/j.cemconres.2004.04.034

38. O’Connor, W., Dahlin, D. C., Rush, G. E., Gerdemann, S. J., Penner, L. R., Nilsen, D. N. Aqueous Mineral Carbonation: Mineral Availability, Pretreatment, Reaction Parametrics, and Process Studies. DOE/ARC-TR-04-002, Albany Research Center, Albany, New York, 2005.

39. Magbitang, R. A., Lamorena, R. B. Carbonate formation on ophiolitic rocks at different pH, salinity and particle size conditions in CO2-sparged suspensions. Int. J. Ind. Chem., 2016, 7, 359–367.
https://doi.org/10.1007/s40090-016-0099-3

40. Turvey, C. C., Wilson, S. A., Hamilton, J. L., Tait, A. W., McCutcheon, J., Beinlich, A., Fallon, S. J., Dipple, G. M., Southam, G. Hydrotalcites and hydrated Mg-carbonates as carbon sinks in serpentinite mineral wastes from the Woodsreef chrysotile mine, New South Wales, Australia: Controls on carbonate mineralogy and efficiency of CO2 air capture in mine tailings. Int. J. Greenh. Gas Control, 2018, 79, 38–60.
https://doi.org/10.1016/j.ijggc.2018.09.015

41. Nishikawa, T., Suzuki, K., Ito, S., Sato, K., Takebe, T. Decomposition of synthesized ettringite by carbonation. Cem. Concr. Res., 1992, 22(1), 6–14.
https://doi.org/10.1016/0008-8846(92)90130-N

42. Hartshorn, S. A., Sharp, J. H., Swamy, R. NThaumasite formation in Portland-limestone cement pastes - A cause of deterioration of Portland cement and related substances in the presence of sulphates. Cem. Concr. Res., 1999, 29(8), 1331–1340.
https://doi.org/10.1016/S0008-8846(99)00100-3

43. Zhou, Q., Hill, J., Byars, E. A., Cripps, J. C., Lynsdale, C. J., Sharp, J. H. The role of pH in thaumasite sulfate attack. Cem. Concr. Res., 2006, 36(1), 160–170.
https://doi.org/10.1016/j.cemconres.2005.01.003

44. Kuusik, R., Paat, A., Veskimäe, H., Uibu, M. Transformations in oil shale ash at wet deposition. Oil Shale, 2004, 21(1), 27–42.

45. Kuusik, R., Veskimäe, H., Uibu, M. Carbon dioxide binding in the heterogeneous systems formed at combustion of oil shale 3. Transformations in the system suspension of ash - flue gases. Oil Shale, 2002, 19(3), 277–288.

46. Trikkel, A., Keelmann, M., Kaljuvee, T., Kuusik, R. CO2 and SO2 uptake by oil shale ashes: Effect of pre-treatment on kinetics. J. Therm. Anal. Calorim., 2010, 99(3), 763–769.
https://doi.org/10.1007/s10973-009-0423-7

47. Uibu, M., Velts, O., Kuusik, R. Developments in CO2 mineral carbonation of oil shale ash. J. Hazard. Mater., 2010, 174(1–3), 209–214.
https://doi.org/10.1016/j.jhazmat.2009.09.038

48. Uibu, M., Kuusik, R., Veskimäe, H. Seasonal binding of atmospheric CO2 by oil shale ash. Oil Shale, 2008, 25(2), 254–266.
https://doi.org/10.3176/oil.2008.2.07

49. Velts, O., Uibu, M., Kallas, J., Kuusik, R. CO2 mineral trapping: Modeling of calcium carbonate precipitation in a semi-batch reactor. Energy Procedia, 2011, 4, 771–778.
https://doi.org/10.1016/j.egypro.2011.01.118

50. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial scale boilers. Oil Shale, 2005, 22(4S), 407–419.

51. Konist, A., Pihu, T., Neshumayev, D., Siirde, A. Oil shale pulverized firing: Boiler efficiency, ash balance and flue gas composition. Oil Shale, 2013, 30(1), 6–18.
https://doi.org/10.3176/oil.2013.1.02

52. Aguilera, J., Martı́nez-Ramı́rez, S., Pajares-Colomo, I., Blanco-Varela, M. T. Formation of thaumasite in carbonated mortars. Cem. Concr. Compos., 2003, 25(8), 991–996.
https://doi.org/10.1016/S0958-9465(03)00121-5

53. Dyer, T. Concrete Durability. CRC Press, 2014.
https://doi.org/10.1201/b16793

54. Arro, H., Prikk, A., Pihu, T. Reducing the environmental impact of Baltic Power Plant ash fields. Oil Shale, 2003, 20(3S), 375–382.

55. Hyvert, N., Sellier, A., Duprat, F., Rougeau, P., Francisco, P. Dependency of C–S–H carbonation rate on CO2 pressure to explain transition from accelerated tests to natural carbonation. Cem. Concr. Res., 2010, 40(11), 1582–1589.
https://doi.org/10.1016/j.cemconres.2010.06.010

56. Suzuki, K., Nishikawa, T., Ito, S. Formation and carbonation of C-S-H in water. Cem. Concr. Res., 1985, 15(2), 213–224.
https://doi.org/10.1016/0008-8846(85)90032-8

57. Wu, B., Ye, G. Carbonation mechanism of different kinds of C-S-H: rate and products. In Proceedings of the International RILEM Conference Materials, Systems and Structures in Civil Engineering 2016, Segment on Concrete with Supplementary Cementitious Materials, 22–24 August 2016, Technical University of Denmark, Lyngby, Denmark (Jensen, O. M., Kovler, K., De Belie, N., eds.), RILEM, 2016, 263–272.


Back to Issue