ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

The characteristics and kinetics of co-pyrolysis of furfural residue with oil shale semi-coke; pp. 26–41

Full article in PDF format | 10.3176/oil.2021.1.02

Authors
Yu Yang, Ye Chen, Ji Xuanyu

Abstract

In the present work, the thermogravimetric analysis-Fourier transform infared spectroscopy (TGA-FTIR) system was employed to investigate the co-pyrolysis behavior of oil shale (OS) semi-coke (SC) and furfural residue (FR). Results indicated that the addition of furfural residue improved the pyrolysis characteristics of blends, while synergy behaved differently with the variation of the mixing proportion. Semi-coke could act as a catalyst for the furfural residue pyrolysis and facilitated the release of hydroxyl, but slightly inhibited the release of COand CH4. The optimal blending ratio of oil shale semi-coke to furfural residue was 1:1. Besides, kinetic parameters were calculated using model-free methods, declaring that the sample pyrolysis was a multi-process.


References

1. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772‒777.
https://doi.org/10.1016/j.energy.2006.05.001

2. Jiang, X. M., Han, X. X., Cui, Z. G. Progress and recent utilization trends in combustion of Chinese oil shale. Prog. Energy Combust. Sci., 2007, 33(6), 552‒579.
https://doi.org/10.1016/j.pecs.2006.06.002

3. Pae, T., Luud, A., Sepp, M. Artificial mountains in North-East Estonia: Monumental dumps of ash and semi-coke. Oil Shale, 2005, 22(3), 333‒343.

4. Wang, Y., Xu, Z. Y., Song, X., Yang, B., Zhang, D. The preparation of low-cost adsorbent for heavy metal based on furfural residue. Mater. Manuf. Process., 2017, 32(1), 87‒92.
https://doi.org/10.1080/10426914.2016.1198017

5. Qin, H., Wang, W., Liu, H. P., Zhang, L. D., Wang, Q., Shi, C. Y., Yao, K. W. Thermal behavior research for co-combustion of furfural residue and oil shale semi-coke. Appl. Therm. Eng., 2017, 120, 19‒25.
https://doi.org/10.1016/j.applthermaleng.2017.03.111

6. Quan, C., Ma, Z. Z., Gao, N. B., He, C. Pyrolysis and combustion characteristics of corncob hydrolysis residue. J. Anal. Appl. Pyrolysis, 2018, 130, 72‒78.
https://doi.org/10.1016/j.jaap.2018.01.025

7. Hu, Z. F., Ma, X. Q., Li, L. J. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst., 2016, 89(3), 447‒455.
https://doi.org/10.1016/j.joei.2015.02.009

8. Jiang, H. F., Zhang, M. Y., Chen, J., Li, S., Shao, Y. F., Yang, J. Q., Li, J. F. Characteristics of bio-oil produced by the pyrolysis of mixed oil shale semi-coke and spent mushroom substrate. Fuel, 2017, 200, 218‒224.
https://doi.org/10.1016/j.fuel.2017.03.075

9. He, Y., Ma, X. Q. Comparative investigation on non-isothermal kinetics for thermo-degradation of lignocellulosic substrate and its chlorinated derivative in atmospheres with CO2 participation. Bioresour. Technol., 2015, 189, 71‒80.
https://doi.org/10.1016/j.biortech.2015.03.145

10. Zhang, X. S., Lei, H. W., Zhu, L., Qian, M., Yadavalli, G., Wu, J., Chen, S. L. Thermal behavior and kinetic study for catalytic co-pyrolysis of biomass with plastics. Bioresour. Technol., 2016, 220, 233‒238.
https://doi.org/10.1016/j.biortech.2016.08.068

11. Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energy, 2000, 66(2), 113‒133.
https://doi.org/10.1016/S0306-2619(99)00038-0

12. Fang, S. W., Yu, Z. S., Lin, Y. S., Hu, S. C., Liao, Y. F., Ma, X. Q. Thermo-gravimetric analysis of the co-pyrolysis of paper sludge and municipal solid waste. Energy Convers. Manag., 2015, 101, 626‒631.
https://doi.org/10.1016/j.enconman.2015.06.026

13. Qin, H., Yue, Y. K., Zhang, L., Liu, Y. Y., Chi, M. S., Liu, H. P., Wang, Q., Liu, B. Study on co-combustion kinetics of oil shale sludge and semi-coke. Energy Fuels, 2016, 30(3), 2373‒2384.
https://doi.org/10.1021/acs.energyfuels.5b02024

14. Yang, Y., Lu, X. F., Wang, Q. H., Mei, L., Song, D. C., Hong, Y. Experimental study on combustion of low calorific oil shale semicoke in fluidized bed system. Energy Fuels, 2016, 30(11), 9882‒9890.
https://doi.org/10.1021/acs.energyfuels.6b01870

15. Nguyen, T. S., Zabeti, M., Lefferts, L., Brem, G., Seshan, K. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresour. Technol., 2013, 142, 353‒360.
https://doi.org/10.1016/j.biortech.2013.05.023

16. Niu, M. T., Wang, S., Han, X. X., Jiang, X. M. Yield and characteristics of shale oil from the retorting of oil shale and fine oil-shale ash mixtures. Appl. Energy, 2013, 111, 234‒239.
https://doi.org/10.1016/j.apenergy.2013.04.089

17. Grierson, S., Strezov, V., Ellem, G., Mcgregor, R., Herbertson, J. Thermal characterisation of microalgae under slow pyrolysis conditions. J. Anal. Appl. Pyrolysis, 2009, 85(1‒2), 118‒123.
https://doi.org/10.1016/j.jaap.2008.10.003

18. Qin, L. B., Han, J., He, X., Zhan, Y. Q., Yu, F. Recovery of energy and iron from oily sludge pyrolysis in a fluidized bed reactor. J. Environ. Manage., 2015, 154, 177‒182.
https://doi.org/10.1016/j.jenvman.2015.02.030

19. Meng, A. H., Zhou, H., Qin, L., Zhang, Y. G., Li, Q. H. Quantitative and kinetic TG-FTIR investigation on three kinds of biomass pyrolysis. J. Anal. Appl. Pyrolysis, 2013, 104, 28‒37.
https://doi.org/10.1016/j.jaap.2013.09.013

20. Yang, Y., Lu, X. F., Wang, Q. H. Investigation on the co-combustion of low calorific oil shale and its semi-coke by using thermogravimetric analysis. Energy Convers. Manag., 2017, 136, 99‒107.
https://doi.org/10.1016/j.enconman.2017.01.006


Back to Issue