eesti teaduste
akadeemia kirjastus
SINCE 1984
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2020): 0.934

General geology and geochemistry of the Lokpanta Formation oil shale, Nigeria; pp. 1–25

Full article in PDF format | 10.3176/oil.2021.1.01

Sylvester Ofili, Alvar Soesoo


A detailed geochemical and mineralogical study was carried out on the Lokpanta oil shale (OS), Nigeria. Samples from three drill cores and several outcrops were studied in order to understand OS general geochemistry and reconstruct tectonic and depositional settings as well as paleoredox conditions. The mineral phases in OS include calcite, quartz, dolomite, feldspar, illite, kaolinite, halloysite, pyrite and gypsum, as well as a trace amount of anatase. The Lokpanta oil shale shows little variation in geochemistry. It is depleted in trace elements Ba and Rb and major compounds except CaO, and is enriched in trace elements Mo, Sb, As, V, Zn, Ni and U with reference to the Post-Archean Australian Shale (PAAS). These enrichments are, however, in most cases lower than those in the Estonian graptolite argillite (GA). Trace element ratios (U/Th, Ni/Co, V/Ni, V/(V + Ni) V/(V + Cr)) indicate that the Lokpanta oil shale was deposited in an anoxic environment. Discriminant diagrams also suggest its deposition in an active continental margin setting and a transitional to marine environment. The geochemical and paleoenvironmental features of the Lokpanta oil shale were compared with those of the Estonian graptolite argillite.


1. World Energy Council. World Energy Resources 2016, Summary, 16.

2. Ekweozor, C. M., Unomah, G. I. First discovery of oil shale in the Benue Trough, Nigeria. Fuel, 1990, 69(4), 502–508.

3. Fatoye, F. BGideonYB. Geology and mineral resources of the Lower Benue Trough, Nigeria. Adv. Appl. Sci. Res., 2013, 4(6), 21–28.

4. Ehinola, O. A. Biostratigraphy and depositional environment of the oil shale deposit in the Abakaliki fold belt, Southeastern Nigeria. Oil Shale, 2010, 27(2), 99–125.

5. Amajor, L. C. Major and trace element geochemistry of Albian and Turonian shales from the Southern Benue trough, Nigeria. J. Afr. Earth Sci., 1987, 6(5), 633–641.

6. Ehinola, O. A., Sonibare, O. O., Akanbi, O. A. Economic evaluation, recovery techniques and environmental implications of the oil shale deposit in the Abakaliki anticlinorium, Southeastern Nigeria. Oil Shale, 2005, 22(1), 5–19.

7. Akande, S. O., Ojo, O. J., Adekeye, O. A, Egenhoff, S. O., Obaje, N. G., Erdtman, B. D. Stratigraphic evolution and petroleum potential of Middle Cretaceous sediments in the Lower and Middle Benue Trough, Nigeria: Insights from new source rock facies evaluation. Petroleum Technology Development Journal (PTDJ), 2011, 1, 1–34.

8. Sonibare, O. O., Jacob, D. E., Ward, C. R., Foley, S. F. Mineral and trace element composition of the Lokpanta oil shale in the Lower Benue Trough, Nigeria. Fuel., 2011, 90(9), 2843– 2849.

9. Voolma, M., Soesoo, A., Hade, S., Hints, R., Kallaste, T. Geochemical heterogeneity of the Estonian graptolite argillite. Oil Shale, 2013, 30(3), 377–401.

10. Olade, M. A. Evolution of Nigeria’s Benue Trough (Aulacogen): a tectonic model. Geol. Mag., 1975, 112(6), 575–583.

11. McCurry, P. The geology of the Precambrian to Lower Paleozoic rocks of Northern Nigeria, a review. In: Geology of Nigeria(Kogbe, C. A., ed.), 1976, 15–39. Elizabethan Pub. Co., Lagos.

12. Carter, J. D., Barber, W., Tait, E. A. The geology of parts of Adamawa, Bauchi and Borno provinces in Northeastern Nigeria. Bull. Geol. Surv. Nigeria, 1963, 30, 1–109. 

13. Wozny, E., Kogbe, C. A. Further evidence of marine Cenomanian, lower Turonian and Maastrichtian in the Upper Benue basin of Nigeria (West Africa). Cretac. Res., 1983, 4(1), 95–99.

14.  Reyment, R. A. Aspects of the Geology of Nigeria. Ibadan University Press, Ibadan, 1965, 145.

15. Nwachukwu, S. O. The tectonic evolution of the southern portion of the Benue Trough, Nigeria. Geol. Mag., 1972, 109(5), 411–419.

16. Amajor, L. C. The Cenomanian hiatus in the Southern Benue Trough, Nigeria. Geol. Mag., 1985, 122(1), 39–50.

17. Adighije, C. Gravity study of Lower Benue Trough, Nigeria. Geol. Mag., 1981, 118(1), 59–67.

18. Offodile, M. E. A review of the geology of the Cretaceous of the Benue Trough.In: Geology of Nigeria (Kogbe, C. A., ed.), 1976, 319–330. Elizabethan Pub. Co., Lagos.

19. Weibel, R. Effects of burial on the clay assemblages in the Triassic Skagerrak Formation, Denmark. Clay Miner., 1999, 34(4), 619–635.

20. Hade, S., Soesoo, A. Estonian graptolite argillites revisited: a future resource? Oil Shale, 2014, 31(1), 4–18.

21. Soesoo, A., Hade, S. Black shales of Estonia: moving towards a Fennoscandian-Baltoscandian database. Transactions of Karelian Research Centre of Russian Academy of Sciences: Precambrian Geology, 2014, 1, 103–114.

22. Hints, R., Soesoo, A., Voolma, M., Tarros, S., Kallaste, T., Hade, S. Centimetre-scale variability of redox-sensitive elements in Tremadocian black shales from the eastern Baltic Palaeobasin. Estonian J. Earth Sci., 2014, 63(4), 233–239.

23. Hints, R., Hade, S., Soesoo, A., Voolma, M. Depositional framework of the East Baltic Tremadocian black shale revisited. GFF, 2014, 136(3), 464–482.

24. Soesoo, A., Puura, V., Kirs, J., Petersell, V., Niin, M., All, T.  Outlines of the Precambrian basement of Estonia. Proc. Estonian Acad. Sci. Geol., 2004, 53(3), 149–164. 

25. Pukkonen, E., Rammo, M. Distribution of molybdenum and uranium in the Tremadoc graptolitic argillite (Dictyonema shale) of North-Western Estonia. Bull. Geol. Surv. Estonia, 1992, 2(1), 3–15. 

26. Petersell, V., Mineyev, D., Loog, A. Mineralogy and geochemistry of obolus sandstones and dictyonema shale of North Estonia. Acta et Comment. Univ. Tartu., Tartu, 1981, 561, 30–49 (in Russian).

27. Veski, R., Palu, V. Investigation of Dictyonema oil shale and its natural and artificial transformation products by a vankrevelenogram. Oil Shale, 2003, 20(3), 265–281. 

28. Lippmaa, E., Maremäe, E. Uranium production from the local Dictyonema shale in North-East Estonia. Oil Shale, 2000, 17(4), 387–394.

29. Soesoo, A., Hade, S. Metalliferous organic-rich shales of Baltoscandia – a future resource or environmental/ecological problem. Archiv Euro Eco, 2012, 2(1), 11–14.

30. Taylor, S. R., McLennan, S. M. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 1985, 312.

31. Petters, S. W., Ekweozor, C. M. Petroleum geology of Benue trough and south-eastern Chad basin. AAPG Bull., 1982, 66(8), 1141–1149.

32.  Roser, B. P., Korsch, R. J. Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol., 1986, 94(5), 635–650.

33. Adeigbe, O. C., Jimoh, Y. A. Geochemical fingerprints; Implication for provenance, tectonic and depositional settings of Lower Benue Trough sequence, Southeastern Nigeria. J. Environ. Earth Sci., 2013, 3(10), 115–140.

34. Bhatia, M. R. Plate tectonics and geochemical composition of sandstone. J. Geol., 1983, 91(6), 611–627.

35. Armstrong-Altrin, J. S., Verma, S. P. Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment. Geol., 2005, 177(1–2), 115–129.

36. Englund, J.-O., Jørgensen, P. A chemical classification system for argillaceous sediments and factors affecting their composition. Geol. Foren. Stock. For., 1973, 95(1), 87–97.

37. Meng, Q. T., Liu, Z. J., Sun, P. C., Xu, Y. B., Li, F., Bai, Y. Y., Xie, W. Q., Deng, S., Song, S., Wang, K. B., Xu, C. Characteristics and accumulation of Middle Jurassic oil shale in the Yuqia area, Northern Qaidam Basin, Northwest China. Oil Shale, 2018, 35(1), 1–25.

38. Nesbitt, H. W., Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299(5885), 715–717.

39. Harnois, L. The CIW index: A new chemical index of weathering. Sediment. Geol., 1988, 55(3), 319–322.

40. Jones, B., Manning, D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol, 1994, 111(1–4), 111–129.

41. Luo, Q. Y., Zhong, N. N., Zhu, L., Wang, Y. N., Qin, J., Qi, L., Zhang, Y., Ma, Y. Correlation of burial organic carbon and paleoproductivity in the Mesoproterozoic Hongshuizhuang Formation, northern North China. Chinese Sci. Bull., 2013, 58(11), 1299–1309.

42. Nath, B. N., Bau, M., Rao, B. R., Rao, Ch. M. Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim. Cosmochim. Acta, 1997, 61(12), 2375–2388.

43. Galarraga, F., Reategui, K., Martïnez, A., Martínez, M., Llamas, J. F., Marquez, G. V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins. J. Petrol. Sci. Eng., 2008, 61(1), 9–14.

44. Hatch, J. R., Leventhal, J. S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem. Geol., 1992, 99(1–3), 65–82.

45. Tribovillard, N., Algeo, T. J., Lyons, T., Riboulleau, A. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol., 2006, 232(1–2), 12–32.

Back to Issue