ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Effect of processing conditions on the improvement of properties and recovering yield of Moroccan oil shale; pp. 61–78
PDF | 10.3176/oil.2022.1.04

Authors
Abdelkrim Abourriche, Mina Oumam, Said Mansouri, Mossaab Mouiya, Yassine Rakcho, Abdelaziz Benhammou, Younes Abouliatim, Jones Alami, Hassan Hannache
Abstract

In the present work, Moroccon Tarfaya oil shale was treated by acids and different solvents under supercritical conditions, successively. Experimental results showed clearly that residual mineral matter had a significant effect on the yield and composition of the resulting organic fraction. Indeed, theoil yields obtained from some samples, 43% and 56%, respectively, were much higher than that from the sub-layer, 18%. In addition, the yield of recuperation and quality of extracted oils were largely dependent on the nature of solvents (toluene, water, shale oil). Thus, phenol was shown to be a very efficient modifier for the supercritical extraction of organic matter from Tarfaya oil shale with toluene, affording a good yield of recovery and a suitable maturation of organic matter. The pitches prepared by mixing phenol and toluene contained more aromatics and had a high char yield (46%) at 950 °C compared to those obtained by extraction with supercritical toluene alone.

 

References

1. Russell, P. L. Oil Shales of the World, Their Origin, Occurrence and Exploitation. Pergamon Press, Oxford, 1990.

2. Russell, P. L. An oil shale perspective. Min. Eng., 1981, 33(1), 29–47.

3. Ranney, M. W. Oil Shale and Tar Sands Technology, Recent Developments. Park Ridge, New Jersey, USA, 1979.

4. Madec, M., Espitalie, J. Toarcian oil shale from the Paris basin. Rev. Inst. French Petroleum, Geology, 1981, 46, N°24544 (in French).

5. Velts, O., Uibu, M., Kallas, J., Kuusik, R. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: Carbonation mechanism, modeling, and product characterization. J. Hazard. Mater., 2011, 195, 139–146.
https://doi.org/10.1016/j.jhazmat.2011.08.019

6. Miao, L., Ji, G., Gao, G., Li, G., Gan, S. Extraction of alumina powders from the oil shale ash by hydrometallurgical technology. Powder Technol., 2011, 207(1–3), 343–347.
https://doi.org/10.1016/j.powtec.2010.11.017

7. Sun, T., Liu, L. L., Wan, L. L., Zhang, Y. P. Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from oil shale ash. Chem. Eng. J., 2010, 163(1–2), 48–54.
https://doi.org/10.1016/j.cej.2010.07.037

8. Gao, G. M., Miao, L. N., Ji, G. J., Zou, H. F., Gan, S. C. Preparation and characterization of silica aerogels from oil shale ash. Mater. Lett., 2009, 63(30) 2721–2724.
https://doi.org/10.1016/j.matlet.2009.09.053

9. Machado, N. R. C. F., Miotto, D. M. M. Synthesis of Na-A and -X zeolites from oil shale ash. Fuel, 2005, 84(18), 2289–2294.
https://doi.org/10.1016/j.fuel.2005.05.003

10. Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208(1–2), 294–305.
https://doi.org/10.1016/j.desal.2006.06.019

11. Oumam, M., Abourriche, A., Mansouri, S., Mouiya, M., Benhammou, A., Abouliatim, Y., El Hafiane, Y., Hannache, H., Birot, M., Pailler, R., Naslain, R. Comparison of chemical and physical activation processes at obtaining adsorbents from Moroccan oil shale. Oil Shale, 2020, 37(2), 139–157.
https://doi.org/10.3176/oil.2020.2.04

12. Abourriche, A. K., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., El Hafiane, Y., Abourriche, A. M., Pailler, R., Naslain, R. Comparative studies on the yield and quality of oils extracted from Moroccan oil shale, J. Supercrit. Fluids, 2013, 84, 98–104.
https://doi.org/10.1016/j.supflu.2013.09.018

13. Abourriche, A., Adil, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. New pitches with very significant maturation degree obtained by supercritical extraction of Moroccan oil shale. J. Supercrit. Fluids, 2008, 47, 195–199.
https://doi.org/10.1016/j.supflu.2008.07.016

14. Martins, M. F., Salvador, S., Thovert, J.-F., Debenest, G. Co-current combustion of oil shale – Part 2: Structure of the combustion front. Fuel, 2010, 89(1), 133–143.
https://doi.org/10.1016/j.fuel.2009.06.040

15. Aboulkas, A., Makayssi, T., Bilali, L., El harfi, K., Nadifiyine, M., Benchanaa, M. Co-pyrolysis of oil shale and plastics: Influence of pyrolysis parameters on the product yields. Fuel Process. Technol., 2012, 96, 209–213.
https://doi.org/10.1016/j.fuproc.2011.12.001

16. Allawzi, M., Al-Otoom, A., Allaboun, H., Ajlouni, A., Al Nseirat, F. CO2 super-critical fluid extraction of Jordanian oil shale utilizing different co-solvents. Fuel Process. Technol., 2011, 92(10), 2016–2023.
https://doi.org/10.1016/j.fuproc.2011.06.001

17. Fei, Y., Marshall, M., Jackson, W. R., Gorbaty, M. L., Amer, M.W., Cassidy, P. J., Chaffee, A. L. Evaluation of several methods of extraction of oil from a Jordanian oil shale. Fuel, 2012, 92(1), 281–287.
https://doi.org/10.1016/j.fuel.2011.08.019

18. Al-Ayed, O. S., Suliman, M. R., Rahman, N. A. Kinetic modeling of liquid generation from oil shale in fixed bed retort. Appl. Energy, 2010, 87(7), 2273–2277.
https://doi.org/10.1016/j.apenergy.2010.02.006

19. Fahmy, T. M., Paulaitis, M. E., Johnson, D. M., McNally, M. E. P. Modifier effects in the supercritical fluid extraction of solutes from clay, soil, and plant materials. Anal. Chem., 1993, 65(10), 1462–1469.
https://doi.org/10.1021/ac00058a026

20. Langenfeld, J. J., Hawthorne, S. B., Miller, D. J., Pawliszyn. Role of modifiers for analytical-scale supercritical fluid extraction of environmental samples. Anal. Chem., 1994, 66(6), 909–916.
https://doi.org/10.1021/ac00078a024

21. Lanças, F. M., Rissato, S. R. Influence of temperature, pressure, modifier, and collection mode on supercritical CO2 extraction efficiencies of Diuron from sugar cane and orange samples. J. Microcolumn Sep., 1998, 10(6), 473–478.
https://doi.org/10.1002/(SICI)1520-667X(1998)10:6<473::AID-MCS2>3.0.CO;2-D

22. Lanças, F. M., Queiroz, M. E. C., da Silva, I. C. E. Seed oil extraction with supercritical carbon dioxide modified with pentane. Chromatographia, 1994, 39(11), 687–692.
https://doi.org/10.1007/BF02274584

23. Lanças, F. M., De Martins, B. S., da Matta, M. H. R. Supercritical fluid extrac-tion (SFE) using an inexpensive ‘home made’ system. J. High Resolut. Chromatogr., 1990, 13(12), 838–839. 
https://doi.org/10.1002/jhrc.1240131210

24. Lanças, F. M., Barbirato, M. A., Galhiane, M. S., Rissato, S. R. Supercritical fluid extraction of chlorothalonil residues from apples. Chromatographia, 1996, 42(9), 547–550.
https://doi.org/10.1007/BF02290289

25. Yang, Y., Gharaibeh, A., Hawthorne, S. B., Miller, D. J. Combined temperature/modifier effects on supercritical CO2 extraction efficiencies of polycyclic aromatic hydrocarbons from environmental samples. Anal. Chem., 1995, 67(3), 641–646.
https://doi.org/10.1021/ac00099a023

26. Luque de Castro, M. D., Tena, M. T. Strategies for supercritical fluid extraction of polar and ionic compounds. Trends Anal. Chem., 1996, 15(1), 32–37.
https://doi.org/10.1016/0165-9936(96)88035-6

27. Dariva, C., de Oliveira, J. V., Vale, M. G. R., Caramao, E. B. Supercritical fluid extraction of a high-ash Brazilian coal. Fuel, 1997, 76(7), 585–591.
https://doi.org/10.1016/S0016-2361(97)00060-4

28. Kök, M. V., Pamir, M. R. Non-isothermal pyrolysis and kinetics of oil shales. J. Therm. Anal. Calorim., 1999, 56(2), 953–958.
https://doi.org/10.1023/A:1010107701483

29. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68.

30. Kök, M. V., Pamir, M. R. Comparative pyrolysis and combustion kinetics of oil shales. J. Anal. Appl. Pyrolysis, 2000, 55(2), 185–194.
https://doi.org/10.1016/S0165-2370(99)00096-0

31. Kök, M. V., Iscan, A. G. Oil shale kinetics by differential methods. J. Therm. Anal. Calorim., 2007, 88(3), 657–661.
https://doi.org/10.1007/s10973-006-8027-y

32. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales. J. Therm. Anal. Calorim., 2007, 90(3), 817–821.
https://doi.org/10.1007/s10973-007-8240-3

33. Özgür, E., Miller, S. F., Miller, B. G., Kök, M. V. Thermal analysis of co-firing of oil shale and biomass fuels. Oil Shale, 2012, 29(2), 190–201.
https://doi.org/10.3176/oil.2012.2.07

34. Björnbom, P. L., Björnbom, E. P. Material losses in liquefaction of raw peat with carbon monoxide. Fuel, 1987, 66(6), 779–784.
https://doi.org/10.1016/0016-2361(87)90124-4

35. Cavalier, J.-C., Chornet, E. Fractionation of peat-derived bitumen into oil and asphaltenes. Fuel, 1978, 57(5), 304-308.
https://doi.org/10.1016/0016-2361(78)90009-1

36. Bekri, O., Ziyad, M. Synthesis of oil shale research and development activities in Morocco. In: Institute of Mining and Minerals Research (Ed.), Proceedings of the 1991 Eastern Oil Shale Symposium, Lexington, Kentucky, USA, 1991, 437–443.

37. Abourriche, A., Oumam, M., Larzek, M., Ichcho, S., Hannache, H., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P.  Elaboration and characterization of the pitches from Moroccan (Tarfaya) oil shale. Phys. Chem. News, 2003, 11, 10–15.

38. Yürüm, Y., Kramer, R., Levy, M. Interaction of kerogen and mineral matrix of an oil shale in an oxidative atmosphere. Thermochim. Acta, 1985, 94(2), 285–293.
https://doi.org/10.1016/0040-6031(85)85272-2

39. Rose, H. R., Smith, D. R., Vassallo, A. M. An investigation of thermal transformations of the products of oil shale demineralization using infrared emission spectroscopy. Energy Fuels, 1993, 7(2), 319–325.
https://doi.org/10.1021/ef00038a024

40. Abourriche, A., Oumam, M., Larzek, M., Ichcho, S., Hannache, H., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. Influence of phenol, temperature and treatment time on the supercritical extraction of oil shale with toluene. Phys. Chem. News, 2003, 12, 93–101.

41. Suatoni, J. C., Swab, R. E. Preparative hydrocarbon compound type analysis by high performance liquid chromatography. J. Chromatogr. Sci., 1976, 14(11), 535–537.
https://doi.org/10.1093/chromsci/14.11.535

42. Tissot, B., Deroo, G., Hood, A. Geochemical study of the Uinta Basin: formation of petroleum from the Green River Formation. Geochim. Cosmochim. Acta, 1978, 42(10), 1469–1485.
https://doi.org/10.1016/0016-7037(78)90018-2

43. Oumam, M., Hannache, H., Pailler, R., Bourrat, X., Naslain, R. Activated carbon fibers from Moroccan oil shales. In: Proceedings of ARQUIMACOM’98 (Martieau, P., Olivares, M., eds.), Bordeaux, France, 1998, 113.

44. Oumam, M. New Adsorbent Materials Obtained from Tarafaya Oil Shale. PhD of Chemical Engineering, Faculté des sciences Ben M’sik, Maroc, 2000.

45. Canel, M., Missal, P. Extraction of solid fuels with sub- and supercritical water. Fuel, 1994, 73(11), 1776–1780.
https://doi.org/10.1016/0016-2361(94)90167-8

46. Abourriche, A., Oumam, M., Hannache, H., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. Autoclave recovery of organic matter from Moroccan oil shales by phenol under sub-critical conditions. Ann. Chim. Sci. Mater., 2005, 30(1), 1–17.
https://doi.org/10.3166/acsm.30.1-17

47. Leach, B. E. Disproportionation of Highly Alkylated Phenols with Phenol. Continental Oil Co, USA,  Brevet, 77-852389 [4125736], 1977.

48. Koel, M., Ljovin, S., Hollis, K., Rubin, J. Using neoteric solvents in oil shale studies. Pure Appl. Chem., 2001, 73(1), 153–159.
https://doi.org/10.1351/pac200173010153

49. Donnet, J. B., Bausal, R. C. Carbon Fibers, 2nd ed.; Marcel Dekker, New York, 1990. 

50. Fitzer, E., Heine, M. Carbon fibre manufacture and surface treatment. In: Fibre Reinforcements for Composite Materials, Composite Materials Series, (Bunsell, A. R., ed.), Elsevier, Amsterdam, 1988, 2, 73–148.

51. Podder, J., Hossain, T. Study of heteroatom effect on graphitic carbons derived from anthracene phenanthrene-sulphur system by thermal and optical analysis. Indian J. Phys., 2002, 76A(6), 537–541.

Back to Issue