ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
EFFECT OF MINERAL MATTER ON PRODUCT YIELD AND COMPOSITION AT ISOTHERMAL PYROLYSIS OF TURKISH OIL SHALES; pp. 463–474
PDF | doi: 10.3176/oil.2009.4.03

Authors
M. SERT, Levent BALLICE, Mithat Yüksel, Mehmet Sağlam
Abstract
This study was aimed to investigate the effect of mineral matter of Göynük oil shales (GOS) on pyrolysis and product evolution. Organic part was separated from mineral matter before pyrolysis in an isothermal pyrolysis reactor. In the demineralization step, carbonate, pyrite and silicates were removed from kerogen by using HCl, HNO3 and HF, respectively. Thereafter all samples were pyrolized in an isothermal pyrolysis apparatus. The tem­peratures for pyrolysis experiments were 450, 500, 550, 600, 650 °C. Recoveries of volatiles and total hydrocarbons increased with increasing temperature. At pyrolysis of silicate-free oil shale (GOS-F), volatile hydro­carbon recovery (VHR) increased nearly by 10 wt.% as compared with VHR from raw oil shale sample (GOS-R) at each pyrolysis temperature. Carbon content of solid residue was also calculated. The effect of mineral content of oil shale on product yield and composition was determined by establishing carbon balance in the reactor. The amount of solid residue decreased as a function of demineralization degree. The pyrolysis reaction in the presence of silicate mineral showed the catalytic effect of silicate minerals aiding coking reactions, and carbon deposition decreased averagely by 20 wt.% in silicate-free oil shale compared with the value for GOS-R at each temperature.
References

  1. Sadiki, A., Kaminsky, W., Halim, H., Bekri, O. Fluidised bed pyrolysis of Moroccan oil shales using the hamburg pyrolysis process // J. Anal. Appl. Pyrol. 2003. Vol. 70, No. 2. P. 427–435.
doi:10.1016/S0165-2370(03)00002-0

  2. Kok, M. V., Senguler, I., Hufnagel, H., Sonel, N. Thermal and geochemical inves­tigation of Seyitomer oil shale // Thermochim. Acta. 2001.Vol. 371, No. 1–2. P. 111–119.
doi:10.1016/S0040-6031(01)00415-4

  3. Şener, M., Şengüler, İ. Geological, mineralogical and geochemical characteris­tics of oil shale bearing deposits in the Hatıldağ oil shale field, Göynük, Turkey // Fuel. 1998. Vol. 77, No. 8. P. 871–880.

  4. Sert, M., Ballice, L., Yuksel, M., Saglam, M., Reimert, R., Erdem, S. Effect of solvent swelling on pyrolysis of kerogen (type-1) isolated from Göynük oil shale Turkey // J. Anal. Appl. Pyrol. 2009. Vol. 84, No. 1. P. 31–38.
doi:10.1016/j.jaap.2008.10.022

  5. Subasinghe, N. D., Awaja, F., Bhargava, S. K. Variation of kerogen content and mineralogy in some Australian tertiary oil shales // Fuel. 2009. Vol. 88, No. 2. P. 335–339.

  6. Ballice, L. Stepwise chemical demineralization of Göynük (Turkey) oil shale and pyrolysis of demineralization products // Ind. Eng. Chem. Res. 2006. Vol. 45, No. 3. P. 906–912.
doi:10.1021/ie050751f

  7. Trewhella, M. J., Poplett, J. F., Grint, A. Structure of Green River oil shale kerogen: Determination using solid state 13C n.m.r. spectroscopy // Fuel. 2006. Vol. 65, No. 4. P. 541–546.

  8. Patterson, J. H. A review of the effects of minerals in processing of Australian oils shales // Fuel. 1994. Vol.73, No. 3. P. 321–327.

  9. Saxby, J. D. Isolation of kerogen in sediments by chemical methods // Chem. Geol. 1970. Vol. 6. P. 173–184.
doi:10.1016/0009-2541(70)90017-3

10. Larsen, J. W., Pan, C. S., Shawer, S. Effect of demieralization on the macro­molecular structure of coals // Energy & Fuels. 1989. Vol. 3, No. 5. P. 557–561.

11. Karayıldırım, T., Yanik, J., Yuksel, M., Saglam, M. Thermogravimetric analysis of pretreated Göynük oil shale and Şırnak asphaltite // Oil Shale. 2004. Vol. 21, No. 3. P. 205–216.

12. Sert, M., Ballice, L., Yuksel, M., Saglam, M. Erdem, S. Fast pyrolysis Şırnak asphaltite (Turkey) and characterization of pyrolysis products // Energy Sources, Part A. 2008. Vol. 30, No. 8. P. 671–680.

13. Schulz, H., Böhringer, W., Kohl, C., Rahmen, N., Will, A. DGMK-Forschungs­bericht 320 DGMK. – Hamburg, Germany, 1984.

14. Ballice, L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale // Fuel Process. Technol. 2005. Vol. 86, No. 6. P. 673–690.
doi:10.1016/j.fuproc.2004.07.003

15. Metecan, I. H., Saglam, M.,Yanik, J., Ballice, L., Yuksel, M. The effect of pyrite catalyst on the hydroliquefaction of Göynük (Turkey) oil shale in the presence of toluene // Fuel. 1999. Vol. 78, No. 5. P. 619–622.

16. Karabakan, A., Yurum, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales // Fuel. 1998. Vol. 77, No. 12. P. 1303–1309.

17. Salepcioglu, S., Gungoren, T., Sert, M., Erdem, S., Saglam, M., Yuksel, M., Ballice, L. Classification of volatile products evolved at fast co-pyrolysis of Göynük oil shale with low density polyethylene // Oil Shale. 2008. Vol. 25, No. 3. P. 335–347.

18. Kopinke, F. D., Zimmermann, G., Nowak, S. On the mechanism of coke forma­tion in steam cracking – conclusions from results obtained by tracer experi­ments // Carbon. 1988. Vol. 26, No. 2. P. 117–124.
Back to Issue