The particle surface characteristics of oil shale and the changes in these characteristics with increasing fineness were determined. FTIR and electrokinetic studies showed that the surfaces of oil shale particle were controlled by oxygen-rich polar groups. FTIR and XPS studies showed that with increasing fineness the polar oxides decreased and organic surface groups increased at grind sizes finer than 100 microns. Flotation was used to view the impact of the changes in surface characteristics on oil shale beneficiation. Formation of an organic surface layer affected separation adversely and selectivity between organic and inorganic entities could not be achieved below 100 microns. Zeta potential values and flotation tests with bitumen-extracted oil shale confirmed that bitumen release generates the organic surface coating. The organic layer shifts the native hydrophilicity of oil shale to hydrophobic state. Findings imply that determination of a certain grind size is critical to avoid bitumen release and to maintain selectivity between organic and inorganic constituents during oil shale beneficiation.
1. EIA, Energy Information Administration. International Energy Annual 2001. – Washington, DC, 2003.
2. Kök, M. V., Guner G., Bagci, S. Combustion kinetics of oil shales by reaction cell experiments // Oil Shale. 2008. Vol. 25, No. 1. P. 5–16.
3. Ballice, L., Reimert, R. Comparison of hydrocarbons formed at pyrolysis of Turkish Type I kerogen (Göynük) and Type II kerogen (Beypazari) // Oil Shale. 2005. Vol. 22, No. 3. P. 317–331.
4. Olivella, M. A., Heras de las, F. X. C. Nonisothermal thermogravimetry of Spanish fossil fuels // Oil Shale. 2006. Vol. 23, No. 4. P. 340–355.
5. Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale // Oil Shale. 2008. Vol. 25, No. 2 Special. P. 101–114.
6. Hutton, A. C. Petrographic classification of oil shales // Int. J. Coal Geol. 1987. Vol. 8, No. 3. P. 203–231.
doi:10.1016/0166-5162(87)90032-2
7. Yen, T. F., Chilingarian, G. V. (eds.). Oil Shale. – Amsterdam, 1976.
8. Datta, R. S., Salotti, C. A. Coarse beneficiation of Green River oil shale // Sixteenth Oil Shale Symposium Proceedings. Colorado: Colorado School of Mines Press, 1983. P. 413–425.
9. Krishnan, G. N., Farley, E. P., Murray, R. G. Beneficiation of U.S. oil shales by froth flotation // Sixteenth Oil Shale Symposium Proceedings. Colorado: Colorado School of Mines Press, 1983. P. 426–436
10. Wang, W. D., Zhou, C. Y. Retorting of pulverized oil shale in fluidized-bed pilot plant // Oil Shale. 2009. Vol. 26, No. 2. P. 108–113.
11. Al-Otoom, A. Y. An investigation into beneficiation of Jordanian El-Lajjun oil shale by froth floatation // Oil Shale. 2008. Vol. 25, No. 2. P. 247–253.
12. Altun, N. E., Hwang, J.-Y., Hicyilmaz, C. Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment // Int. J. Miner. Process. 2009. Vol. 91, No. 1. P. 1–13.
doi:10.1016/j.minpro.2008.10.003
13. Sparks, B. D., Kotlyar, L. S., O’Carroll, J. B., Chung, K. H. Athabasca oil sands: effect of organic coated solids on bitumen recovery and quality // J. Petrol. Sci. Eng. 2003. Vol. 39, No. 3. P. 417–430.
doi:10.1016/S0920-4105(03)00080-9
14. Schramm, L. L., Stasiuk, E. N., Turner, D. The influence of interfacial tension in the recovery of bitumen by water-based conditioning and flotation of Athabasca oil sands // Fuel Process. Technol. 2003. Vol. 80, No. 2. P. 101–118.
doi:10.1016/S0378-3820(02)00224-2
15. Larsen, J. W., Kidena, K. The sudden release of oil and bitumen from Bakken shale on heating in water // Energy & Fuels. 2002. Vol. 16, No. 4. P. 1004–1005.
16. Diaz, M. E., Montes, F. J., Galan, M. A. Langmuir films of bitumen and its fractions extraxted from oil shales (Puertollano, Spain) // Energy & Fuels. 2007. Vol. 21, No. 6. P. 3455–3461.
doi:10.1021/ef7004095
17. Razvigorova, M., Budinova, T., Tsyntsarski, B., Petrova, B., Ekinci, E., Atakul, H. The composition of acids in bitumen and in products from saponification of kerogen: investigation of their role as connecting kerogen and mineral matrix // Int. J. Coal Geol. 2008. Vol. 76, No. 3. P. 243–249.
doi:10.1016/j.coal.2008.07.011
18. Sener, M., Senguler, I., Kok, M. V. Geological considerations for the economic evaluation of oil shale deposits in Turkey // Fuel. 1995. Vol. 74, No. 7. P. 999–1003.
19. Kök, M. V., Guner, G., Bagci, S. Application of EOR techniques for oil shale fields (in-situ combustion approach) // Oil Shale. 2008. Vol. 25, No. 2. P. 217–225.
doi:10.3176/oil.2008.2.04
20. Altun, N. E., Hicyilmaz, C., Hwang, J.-Y, Bagci, A. S. Beneficiation of Himmetoğlu oil shale by flotation as a solid fuel substitute. Part 2. Process optimization by a statistical approach // Energy & Fuels. 2006. Vol. 20, No. 1. P. 222–226.
21. Hazai, I., Alexander, G., Essiger, B., Szekely, T. Identification of aliphatic biological markers in brown coals // Fuel. 1988. Vol. 67, No. 7. P. 973–982.
22. Kruge, M. A., Hubert, J. F., Akes, R. J., Meriney, P. E. Biological markers in Lower Jurassic synrift lacustrine black shales, Hartford basin, Connecticut, U.S.A. // Org. Geochem. 1990. Vol. 15, No. 3. P. 281–289.
doi:10.1016/0146-6380(90)90006-L
23. Mohammed, Z., Anabtawi, A., Uysal, B. Z. Extraction of El-Lajjun oil shale // Separ. Sci. Technol. 1995. Vol. 30, No. 17. P. 3363–3373.
24. Tissot, B. P., Welte, D. H. Petroleum Formation and Occurrence. – Berlin: Springer Verlag, 1984.
25. Ganz, H., Kalkreuth, W. Application of infrared spectroscopy to the classification of kerogen types and the evaluation of source rock and oil shale potentials // Fuel. 1987. Vol. 66, No. 5. P. 708–711.
26. Boukir, A., Guiliano, M., Asia, L., Hallaoui, A. El, Mille, G. A fraction to fraction study of photo-oxidation of BAL 150 crude oil asphaltenes // Analusis. 1998. Vol. 26, No. 9. P. 358–364.
27. Pompe, S., Schmeide, K., Bubner, M., Geipel, G., Heise, K. H., Bernhard, G., Nitsche, H. Investigation of humic acid complexation behavior with uranyl ions using modified synthetic and natural humic acids // Radiochim. Acta. 2000. Vol. 88. P. 553–558.
doi:10.1524/ract.2000.88.9-11.553
28. Stevenson, F. J. Humus chemistry: genesis, composition, reactions, 2nd Ed. – New York, 1994.
29. Ouatmane, A., Dorazio, V., Hafidi, M., Revel, J. C., Senesi, N. Elemental and spectroscopic characterization of humic acids fractionated by gel permeation chromatography // Agronomie. 2000. Vol. 20, No. 5. P. 491–504.
30. Sarikaya, M., Özbayoğlu, G. Electrokinetics of oxidized coal // Fuel Process. Technol, 1990. Vol. 24. P. 459–466.
doi:10.1016/0378-3820(90)90087-9
31. Holysz, L. Surface free energy and floatability of low-rank coal // Fuel. 1996. Vol. 75, No. 6. P. 737–742.
32. Fuerstenau, D. W., Rosenbaum, J. M., Laskowski, J. Effect of surface functional groups on the flotation of coal // Colloids and Surfaces. 1983. Vol. 8, No. 2. P. 153–173.
doi:10.1016/0166-6622(83)80082-1
33. Arnold, B. J., Aplan, F. F. The hydrophobicity of coal macerals // Fuel. 1989. Vol. 68, No. 5. P. 651–658.
34. Bolat, E., Sağlam, S., Pişkin, S. The effect of oxidation on the flotation properties of a Turkish bituminous coal // Fuel Process. Technol. 1998. Vol. 55, No. 2. P. 101–105.
doi:10.1016/S0378-3820(98)00039-3
35. Altun, N. E., Hicyilmaz, C., Hwang, J.-Y., Bagci, A. S. Beneficiation of Himmetoğlu oil shale by flotation as a solid fuel substitute. Part 1. Materials characteristics and flotation behavior // Energy & Fuels. 2006. Vol. 20, No. 1. P. 214–221.
36. Vamvuka, D., Agridiotis, V. The effect of chemical reagents on lignite flotation // Int. J. Miner. Process. 2001. Vol. 61, No. 3. P. 209–224.
doi:10.1016/S0301-7516(00)00034-X