ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
DISSOLUTION RATE OF OIL SHALE THERMOBITUMEN IN DIFFERENT SOLVENTS; pp. 399–414
PDF | doi: 10.3176/oil.2009.3.05

Authors
Ille Johannes, L. TIIKMA, J. SOKOLOVA
Abstract
Dissolution kinetics of the mix of thermobitumen and oil (TBO) formed at low-temperature pyrolysis of oil shale in autoclaves was studied for the first time. The pyrolysis temperature was varied in the range of 350–370 °C and duration between 3 and 9 hours. The dissolution of TBO obtained was conducted in a thermostated stirred class reactor and evaluated by the increase in optical density of the solutions with time varying temperature (25–60 °C) and solvent type (benzene, toluene, oil shale petrol and ethanol). A mathematical model was deduced for quantitative description of dis­solu­tion kinetics by approxima­tion of the process to the first-order parallel dis­solution of two fractions. The dissolution rate coefficients for the fractions were estimated, and contribution of their partial optical densities on the current optical density was described under the conditions studied.
References

  1. Aarna, A. Y., Lippmaa, E. T. Thermal destruction of oil shale-kukersite // Trans. Tallinn Polytechnic Institute. Series A. 1958. No. 97. P. 3–27 [in Russian].

  2. Zaidentsal', A. L., Soone, J. H., Muoni, R. T. Yields and properties of thermal bitumen obtained from combustible shale // Solid Fuel Chemistry. 2008. Vol. 42, No. 2. P. 74–79.

  3. Tiikma, L., Zaidentsal, A., Tensorer M. Formation of thermobitumen from oil shale by low temperature pyrolysis in an autoclave // Oil Shale. 2007. Vol. 24, No 4. P. 535–546.

  4. Johannes, I., Tiikma, L., Zaidentsal, A., Luik, L. Kinetics of kukersite low-temperature pyrolysis in autoclaves // J. Anal. Appl. Pyrolysis. 2009. Vol. 85, No. 1–2. P. 508–513.
doi:10.1016/j.jaap.2008.07.005

  5. Johannes, I., Zaidentsal, A. Kinetics of low-temperature retorting of kukersite oil shale // Oil Shale. 2008. Vol. 25, No 4. P. 412–425.

  6. Tiikma, L., Johannes, I., Luik, H., Zaidentsal, A., Vink, N. Thermal dissolution of Estonian oil shale // J. Anal. Appl. Pyrolys. 2009. Vol. 85, No. 1–2. P. 502–507.
doi:10.1016/j.jaap.2008.09.009

  7. Luik, H., Klesment, I. Liquefaction of kukersite concentrate at 330-370 °C in supercritical solvents // Oil Shale. 1997. Vol. 14, No. 4. P. 419–432.

  8. Luik, H., Palu, V., Bityukov, M., Luik, L., Kruusement, K., Tamvelius, H., Pryadka, N. Liquefaction of Estonian kukersite oil shale kerogen with selected superheated solvents in static conditions // Oil Shale. 2005. Vol. 22, No. 1 P. 25–36.

  9. Dokoumetzidis, A., Macheras, P. A century of dissolution research: From Noyes and Whitney to the biopharmaceutics classification system // Int. J. Pharm. 2006. Vol. 321, No. 1–2. P. 1–11.
doi:10.1016/j.ijpharm.2006.07.011

10. Noyes, A., Whitney, W. R. The rate of solution of solid substances in their own solutions // J. Am. Chem. Soc. 1897. Vol. 19, No. 12. P. 930–934.
doi:10.1021/ja02086a003

11. Nernst, W. Theorie der Reaktionsgeschwindigkeit in heterogenen Systemen // Z. Phys. Chem. 1904. Vol. 47. P. 52–55.

12. Skrdla, P. J. A simple model for complex dissolution kinetics: A case study of norfloxacin // J. Pharm. Biomed. Anal. 2007. Vol. 45, No. 2. P. 251–256.
doi:10.1016/j.jpba.2007.06.012

13. Peppas, N. A. Analysis of Fickian and non-Fickian drugrelease from polymers // Pharm. Acta Helv. 1985. Vol. 60, No. 4. P. 110–111.

14. Galwey, A. K., Brown, M. E. Thermal Decomposition of Ionic Solids: Chemical Properties and Reactivities of Ionic Crystalline Phases, 1st ed. – Elsevier, Amsterdam, 1999. P. 75.

15. Khawam, A., Flanagan, D. R. Role of isoconversional methods in varying activa­tion energies of solid-state kinetics. I. Isothermal kinetic studies // Thermochim. Acta. 2005. Vol. 429, No. 1. P. 93–102.
doi:10.1016/j.tca.2004.11.030

16. Khawam, A., Flanagan, D. R. Role of isoconversional methods in varying activation energies of solid-state kinetics. II. Nonisothermal kinetic studies // Thermochim. Acta. 2005. Vol. 436, No. 1–2. P. 101–112.
doi:10.1016/j.tca.2005.05.015

17. Skrdla, P. J., Robertson, R. T. Dispersive kinetic model for isothermal solid state conversions and their application to the thermal decomposition of oxacillin // Thermochim. Acta. 2007. Vol. 453, No. 1. P. 15–20.
doi:10.1016/j.tca.2006.11.004

18. Aboulkas, A., El Harfi, K., El Bouadili, A., Benchanaa, M., Mokhlisse, A., Outzourit, A. Kinetics of co-pyrolysis of Tarfaya (Morocco) oil shale with high-density polyethylene // Oil Shale. 2007. Vol. 24, No. 1. P. 14–33.

19. Aboulkas, A., El harfi, K., El bouadili, A. Kinetics and mechanism of Tarfaya (Morocco) and LDPE mixture pyrolysis // J. Mat. Proc. Technol. 2008. Vol. 206, No. 1–3. P. 16–24.
doi:10.1016/j.jmatprotec.2007.11.282

20. Yang Xulai, Zhang Jian, Zhu Xifeng. Thermal degradation kinetics of calcium-enriched bio-oil // AIChE J. 2008. Vol. 54, No. 7. P. 1945–1950.

21. Farjas, J., Roura, P. Simple approximate analytical solution for nonisothermal single-step transformations: kinetic analysis // AIChE J. 2008. Vol. 54, No. 8. P. 2145–2154.

22. Ortega, A. A simple and precise linear method for isoconversional data // Thermochim. Acta. 2008. Vol. 474, No. 1–2. P. 81–86.
doi:10.1016/j.tca.2008.05.003

23. Öpik, I., Golubev, N., Kaidalov, A., Kann, J., Elenurm, A. Current status of oil shale processing in solid heat carrier UTT (Galoter) retorts in Estonia // Oil Shale. 2001. Vol. 18, No. 2. P. 99–108.
Back to Issue