Oil production (1942–1966) and uranium extraction (1953–1961) from the Alum Shale Formation in Kvarntorp, Sweden has had a great environmental impact on the area. Other industrial activities have also contributed to pollution. This study combines archive research with monitoring data and new sampling in order to assess the extent of the impact. During the production period, process water containing oil, phenols, sulfur compounds and high concentrations of iron reached the stream resulting in low water quality downstream. Also the landscape was reshaped, resulting in water filled pit lakes and a 100-meter-high shale waste deposit. Today, past alum shale activities still have an impact on the environment. Sulfate concentrations in the pit lakes are significantly higher than background values and downstream water also shows higher concentrations of elements such as nickel and uranium. The waste deposit still has a hot interior and an important question is the cooling rate and possible future leaching scenarios. Remaining hydrocarbons show today only a local impact while trace elements are transported downstream and affect a larger area.
1. Brittingham, M. C., Maloney, K. O., Farag, A. M., Harper, D. D., Bowen, Z. H. Ecological risks of shale oil and gas development to wildlife, aquatic resources and their habitats. Environ. Sci. Technol., 2014, 48(19), 11034‒11047.
https://doi.org/10.1021/es5020482
2. Fu, X., Wang, J., Zeng, Y., Tan, F., Feng, X. Trace elements and their behaviour during the combustion of marine oil shale from Changliang Mountain, northern Tibet, China. Environ. Earth Sci., 2013, 70, 1125‒1134.
https://doi.org/10.1007/s12665-012-2199-5
3. Lenhard, L. G., Andersen, S. M., Coimbra-Araújo, C. H. Energy-environmental implications of shale gas exploration in Paraná Hydrological Basin, Brazil. Renew. Sustain. Energy Rev., 2018, 90, 56‒69.
https://doi.org/10.1016/j.rser.2018.03.042
4. Nduagu, E. I., Gates, I. D. Unconventional heavy oil growth and global greenhouse gas emissions. Environ. Sci. Technol., 2015, 49(14), 8824‒8832.
https://doi.org/10.1021/acs.est.5b01913
5. Slonecker, E. T., Milheim, L. E. Landscape disturbance from unconventional and conventional oil and gas development in the Marcellus shale region of Pennsylvania, USA. Environments, 2015, 2(2), 200‒220.
https://doi.org/10.3390/environments2020200
6. Toomik, A., Liblik, V. Oil shale mining and processing impact on landscapes in north-east Estonia. Landsc. Urban Plan., 1998, 41(3‒4), 285‒292.
https://doi.org/10.1016/S0169-2046(98)00066-8
7. Väizene, V., Valgma, I., Karu, V., Orru, M. Environmental impact of oil shale mining. Environ. Earth Sci., 2016, 75, 1201.
https://doi.org/10.1007/s12665-016-5996-4
8. Vallner, L., Gavrilova, O., Vilu, R. Environmental risks and problems of the optimal management of an oil shale semi-coke and ash landfill in Kohtla-Järve, Estonia. Sci. Total Environ., 2015, 524‒525, 400‒415.
https://doi.org/10.1016/j.scitotenv.2015.03.130
9. Jefimova, J., Irha, N., Reinik, J., Kirso, U., Steinnes, E. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: A long-term field study. Sci. Total Environ., 2014, 481, 605‒610.
https://doi.org/10.1016/j.scitotenv.2014.02.105
10. Bhargava, S. K., Ram, R., Pownceby, M., Grocott, S., Ring, B., Tardio, J., Jones, L. A review of acid leaching of uraninite. Hydrometallurgy, 2015, 151, 10‒24.
https://doi.org/10.1016/j.hydromet.2014.10.015
11. Baigenzhenov, O., Khabiyev, A., Mishra, B., Turan, M. D., Akbarov, M., Chepushtanova, T. Uranium (VI) recovery from black shale leaching solutions using ion exchange: Kinetics and equilibrium studies. Minerals, 2020, 10(8), 689.
https://doi.org/10.3390/min10080689
12. Lavergren, U., Åström, M. E., Falk, H., Bergbäck, B. Metal dispersion in ground-water in an area with natural and processed black shale – Nationwide perspective and comparison with acid sulfate soils. Appl. Geochem., 2009, 24(3), 359‒369.
https://doi.org/10.1016/j.apgeochem.2008.11.022
13. Puura, E. Weathering of Mining Waste Rock Containing Alum Shale and Limestone: A Case-Study of the Maardu Dumps, Estonia. PhD thesis. Department of Chemical Engineering and Technology, KTH Royal Institute of Technology, Stockholm, 1998.
14. Andersson, A., Dahlman, B., Gee, D. G., Snäll, S. The Scandinavian Alum Shales. Geological Survey of Sweden, 1985, Ser. Ca, No. 56, Uppsala, 1‒50.
15. Bruton, D. L., Gabrielsen, R. H., Larsen, B. T. The Caledonides of the Oslo Region, Norway – stratigraphy and structural elements. Nor. J. Geol., 2010, 90, 93‒121.
16. Pabst, T., Sørmo, E., Endre, E. Geochemical characterisation of Norwegian Cambro-Ordovician black mudrocks for building and construction use. Bull. Eng. Geol. Environ., 2017, 76, 1577‒1592.
https://doi.org/10.1007/s10064-016-0941-z
17. Wilke, F. D. H., Schettler, G., Vieth-Hillebrand, A., Kühn, M. Activity concentrations of 238U and 226Ra in two European black shales and their experimentally-derived leachates. J. Environ. Radioact., 2018, 190‒191, 122‒129.
https://doi.org/10.1016/j.jenvrad.2018.05.005
18. Jüriado, K., Raukas, A., Petersell, V. Alum shales causing radon risks on the example of Maardu area, North-Estonia. Oil Shale, 2012, 29(1), 76‒84.
https://doi.org/10.3176/oil.2012.1.07
19. Eklund, M., Bergbäck, B., Lohm, U. Reconstruction of historical cadmium and lead emissions from a Swedish alumworks, 1726‒1840. Sci. Total Environ., 1995, 170(1‒2), 21‒30.
https://doi.org/10.1016/0048-9697(95)04526-7
20. Falk, H., Lavergren, U., Bergbäck, B. Metal mobility in alum shale from Öland, Sweden. J. Geochem. Explor., 2006, 90(3), 157‒165.
https://doi.org/10.1016/j.gexplo.2005.10.001
21. Bäckström, M., Börjesson, E., Karlsson, S. Diurnal variations of abiotic parameters in a stream, recipient for drainage water in Ranstad, southwest Sweden. J. Environ. Monit., 2002, 4, 772‒777.
https://doi.org/10.1039/B201659A
22. Kalinowski, B. E., Johnsson, A., Arlinger, J., Pedersen, K., Ödegaard-Jensen, A., Edberg, F. Microbial mobilization of uranium from shale mine waste. Geo-microbiol. J. 2006, 23(3‒4), 157‒164.
https://doi.org/10.1080/01490450600599197
23. Bengtson, P. Hydrogeology of the Kvarntorp Area. Geological Survey of Sweden, 1971, SER C, No 667, Yearbook 65, No 13 (in Swedish, English abstract and summary).
24. Hessland, I., Armands, G. Alum shale – geology. Statens industriverk: SIND PM, 1978, 3, Stockholm (in Swedish).
25. Kumla Municipality. Water Monitoring Program in Kvarntorp, 1993‒2018 (one report every year, in Swedish).
26. Schwartz, S. The shale oil plant at Kvarntorp. Offprint from Näringsliv och Kultur, 1945, 23 pp. (in Swedish).
27. SOU (Swedish Government Official Reports), 1961, 27, Stockholm, 144 pp. (in Swedish).
28. Kumla Municipality Digital Photo Archive. https://kk.kulturhotell.se/ (accessed December 4th 2019).
29. Werner, D. Expansion of the shale oil industry during the last year. Teknisk Tidskrift, 1942, 72, booklet 37, 417‒424 (in Swedish).
30. Zeidler, W. Overview of our shale supply. Skifferskriften, 1953, 4, 9‒15 (in Swedish).
31. Schjånberg, E. News from the research department. Skifferskriften, 1955, 6, 8‒10 (in Swedish).
32. Brandberg, Å. The fines issue. Skifferskriften, 1956, 1, 11‒13 (in Swedish).
33. Sundqvist, S. The Ljungström plant. Skifferskriften, 1956, 2, 8‒10 (in Swedish).
35. SSAB. Technical Economical Analysis. 1956, nr 4, del 1 (archive material in Swedish).
35. Liebgott, N. Account of the Drilling Procedure in the Case of Oil Shale Mining in Närke, Kvarntorp, January 8th 1963 (archive material in Swedish).
36. SSAB. Account of the Operations at the Kvarntorp Plant – Main Department T – During the Financial Year 1959/60 and an Overview of the Period 1952/53-1959/60 (archive material in Swedish).
37. Hjalmarsson, H., Pilo, C. W. Administration report for the business year 1962‒1963. Skifferskriften, 1963, 2, 5‒12 (in Swedish).
38. Hjalmarsson, H., Pilo, C. W. Administration report for the business year 1963‒1964. Skifferskriften, 1964, 1, 4‒8 (in Swedish).
39. Skye, E. The influence of air pollution on the fruticulous and foliaceous lichen flora around the shale oil works at Kvarntorp in the province of Närke. Svensk Botanisk Tidskrift, 1958, 52, 133‒190 (in Swedish, with summary in English).
40. Growth, B., Åkerlind, G. Österbygden Water Court. Account for 74/1944, Development and Affected Water Bodies, 1955 (archive material in Swedish).
41. Holm, T., Ekholm, D., Johansson, L., Bäckström, M., Rehn, I., Forsmark, T., Axenhamn, L., Sundblad, B. Kvarntorp Area – Study of the Waste Deposit. SWECO VIAK AB and Geological Survey of Sweden, 2005 (report in Swedish).
42. Wikström, S. Kvarntorp Waste Deposit, Investigation Report. Kumla brandförsvar, 1983 (report in Swedish).
43. Tydén, Å. Contractual relationship between SSAB and SSV. Skifferskriften, 1961, 4, 12‒13 (in Swedish).
44. Ekholm, D., Bäckström, M., Johansson, L., Holm, T., Heinemo, S-Å. The Kvarntorp Area. Investigation Regarding Soil Pollution – Pilot Study. Geological Survey of Sweden, 2005, project number 43033, 108 pp. (report in Swedish).
45. SOU (Swedish Government Official Reports), 1956, 58, part 2, 82‒114 (in Swedish).
46. Johansson, S., Orrenius, J. Letter to Swedish Government 1976-03-19, from Svenska Skifferaktiebolaget (SSAB) and Luossavaara-Kiirunavaara Aktiebolag (LKAB), 10 pages (archive material in Swedish).
47. SWECO VIAK. Serpentine Pond System in Kvarntorp – Summarising Report Regarding Restoration Measures in the Serpentine System, Kvarntorp, 2003–2005, 2005 (report in Swedish).
48. Kumla Municipality and Örebro County Administrative Board. The Environment in Kvarntorp, 1979 (in Swedish).
49. Salomonsson, G. Diversion of Ammonia Water to the Kvarntorp Lakes – Investigation for Swedish Saltpeter Works. Terra Bona, 1970 (report in Swedish).
50. Åhlgren, K., Sjöberg, V., Grawunder, A., Allard, B., Bäckström, M. Chemistry of acidic and neutralized alum shale pit lakes 50 years after mine closure, Kvarntorp, Sweden. Mine Water Environ., 2020, 39, 481‒497.
https://doi.org/10.1007/s10230-020-00665-y
51. Francis, C. W., Timpson, M. E., Wilson, J. H. Bench- and pilot-scale studies relating to the removal of uranium from uranium-contaminated soils using carbonate and citrate lixiviants. J. Hazard. Mater., 1999, 66(1‒2), 67‒87.
https://doi.org/10.1016/S0304-3894(98)00209-X