ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
KINETICS OF LOW-TEMPERATURE RETORTING OF KUKERSITE OIL SHALE; pp. 412–425
PDF | doi: 10.3176/oil.2008.4.03

Authors
Ille Johannes, A. ZAIDENTSAL
Abstract
A step-by-step mathematical model was deduced for description of the co-effect of time, temperature and heating rate at low-temperature (370–410 °C) on the yield of kukersite oil shale pyrolysis products in a laboratory retort. According to the scheme applied, the parallel formation of thermobitumen and volatiles from kukersite, and parallel-consequent formation of volatiles and coke from the thermobitumen formed were approximated to the first order kinetic reac­tions. The algorithms for estimation of the corresponding rate coefficients (k1–k4) were proposed. The values of apparent activation energy (E1-E4) and frequency factor (A1-A4) were calculated using the temperature dependencies of the rate coefficients estimated on the basis of experimental results obtained at isothermal retorting. A kinetic compensation effect was revealed between the bulk of kinetic constants found: lnA = 0.176(±0.009)E – 2.59(±2.29). The share factors and their temperature dependencies for distribu­tion of malthenes and asphaltenes in thermo­bitumen, and gas and oil in volatiles were found from the experimental results of kukersite low-tem­perature retorting. The effect of time on the yield of the products pre­dicted introducing the constants found into the model deduced agreed satisfactory with the experimental results obtained at retort­ing of kukersite under non-linear increase of temperature up to 370–410 °C and keeping 20–60 minutes under the nominal temperature.
References

  1. Klewer, H. W., Mauch, K. Über den Estländishen Ölschiefer “Kukersit”. – Halle, 1927.

  2. Hisin, Y. I. Thermal Decomposition of Oil Shales. – Leningrad. Moscow. Gos­top­izdat, 1948. 172 pp. [in Russian].

  3. Krumin, P. Review of the Estonian oil shale industry, with brief account of oil shale developments in the United States. Engineering Experiment Station. Circular No 50 // Ohio State University Studies. Eng. series. 1949. Vol. XVIII, No. 6. 126 p.

  4. Aarna, A. Y. Isothermal destruction of Baltic oil shale // Transactions of Tallinn Polytechnic Institute. 1954. Series A. No. 57. P. 32–34 [in Russian].

  5. Aarna, A. Y. About isothermal destruction of Baltic oil shale // J. Appl. Chem. 1955. Vol. 28, No. 10. P. 1138–1142 [in Russian].

  6. Aarna, A. Y. About kinetics of thermal destruction of Baltic oil shale // J. Appl. Chem. 1956. Vol. 29, No. 4. P. 606–610 [in Russian].

  7. Kollerov, D. K. Rate of thermal destruction of organic matter from oil shales // Chemistry and Technology of Fuels. 1956. Nr. 10. P. 55-62 [in Russian].

  8. Karavayev, N. M., Werner, I. M. About thermobitumen of Gdov oil shale // Trans­actions of the Institute of Goryuchih Iskopayemyh. Academy of Sciences of USSR. 1950. Vol. 2. P. 285–295 [in Russian].

  9. Aarna, A. Y., Lippmaa, E. T. Thermal destruction of oil shale-kukersite // Trans­actions of Tallinn Polytechnic Institute. Series A. 1958. No. 97. P. 3–27 [in Russian].

10. Thermal Destruction of Shale-Kukersite. M. Y. Gubergrits (ed.). – Tallinn: “Valgus”, 1966. P. 27–32 [in Russian].

11. Kogerman, P., Luts, K., Hüsse, I. On the Chemistry of Estonian Oil Shale. – Moscow, Leningrad: Goshimtexizdat, 1934 [in Russian].

12. Kask, K. A. About bituminizing of kerogen of oil shale-kukersite. Report I // Trans­actions of Tallinn Polytechnic Institute. 1955. Series A. No. 63. P. 51–64 [in Russian].

13. Kask, K. A. About bituminizing of kerogen of oil shale-kukersite. Report II // Transactions of Tallinn Polytechnic Institute. 1956. Series A. No. 73. P. 23–40 [in Russian].

14. Fomina, A. S., Pobul, L. Y., Degteryova, Z. A. Origin of Kerogen of Baltic Oil Shale and its Chemical Characteristics as Raw Material. – Tallinn: Acad. Sci. Estonian SSR, 1965 [in Russian].

15. Schulman, A. I. Investigation of Bituminizing Process of Shale Organic Con­centrate. – Thesis of cand. sci. Leningrad: VNII Neftekhim, 1968 [in Russian].

16. Zaidentsal, A. L., Soone, J. H., Muoni, R. T.Yields and properties of thermal bitumen obtained from combustible shale // Solid Fuel Chemistry. 2008. Vol. 42, No. 2. P. 74–79.

17. Tiikma, L., Zaidentsal, A., Tensorer, M. Formation of thermobitumen from oil shale by low temperature pyrolysis in autoclaves // Oil Shale. 2007. Vol. 23, No. 3. P. 535–546.

18. Johannes, I., Tiikma, L. Kinetics of oil shale pyrolysis in an autoclave under non-linear increase of temperature // Oil Shale. 2004. Vol. 21, No. 4. P. 273–288.

19. Johannes, I., Tiikma, L., Zaidentsal, A., Luik, L. Kinetics of kukersite low-tem­perature pyrolysis in autoclaves // Abstracts of the 18th International Symposium on Analytical and Applied Pyrolysis. PYROLYSIS 2008. Lanzarote, Canary Islands, May 18–23, 2008.

20. Galway, A. K. Is the science of thermal analysis kinetics based on solid founda­tion? A literature appraisal // Thermochim. Acta. 2004. Vol. 413, No. 1–2. P. 139–183.
doi:10.1016/j.tca.2003.10.013

Back to Issue