The use of biomass (BM) and oil shale (OS) blends for the production of cleaner and improved fuels and chemicals through co-pyrolysis has recently attracted attention. The potential benefits, synergetic effects, interactions and promotion and inhibition effects of co-pyrolysis of BM and OS are reviewed and analyzed in this article based on an overview of various recent studies of co-pyrolysis, including the experimental and operational parameters and the yield and composition of the products. The effects of co-pyrolysis on different feedstock blends are discussed to guide future research on BM and OS co-pyrolysis. The effects of different pyrolysis parameters that can improve the pyrolysis process and quality of products are also reviewed. These parameters include CO2 and steam atmospheres, heating rate, reaction temperature and particle size. Overall, in most cases reviewed, co-pyrolysis can enhance the yields of bio-oils, producer gas and chars as well as improve their properties while reducing the environmental effects of fossil fuels.
1. Sikarwar, V. S., Zhao, M., Clough, P., Yao, J., Zhong, X., Memon, M. Z., Shah, N., Anthony, E. J., Fennell, P. S. An overview of advances in biomass gasification. Energy Environ. Sci., 2016, 9, 2939–2977.
https://doi.org/10.1039/C6EE00935B
2. Rogelj, J., Den Elzen, M., Höhne, N., Fransen, T., Fekete, H., Winkler, H., Schaeffer, R., Sha, F. Riahi, K., Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature, 2016, 534, 631–639.
https://doi.org/10.1038/nature18307
3. Powell, T. W. R., Lenton, T. M. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci., 2012, 5, 8116–8133.
https://doi.org/10.1039/c2ee21592f
4. Wang, Q., Ma, Y., Li, S., Hou, J., Shi, J. Exergetic life cycle assessment of Fushun-type shale oil production process. Energy Convers. Manag., 2018, 164, 508–517.
https://doi.org/10.1016/j.enconman.2018.03.013
5. Zhang, L., Xu, C. (Charles), Champagne, P. Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag., 2010, 51(5), 969–982.
https://doi.org/10.1016/j.enconman.2009.11.038
6. Uddin, M. N., Techato, K., Taweekun, J., Rahman, M. M., Rasul, M. G., Mahlia, T. M. I., Ashrafur, S. M. An overview of recent developments in biomass pyrolysis technologies. Energies, 2018, 11(11), 3115.
https://doi.org/10.3390/en11113115
7. Akhtar, A., Krepl, V., Ivanova, T. A combined overview of combustion, pyrolysis, and gasification of biomass. Energy Fuels, 2018, 32(7), 7294–7318.
https://doi.org/10.1021/acs.energyfuels.8b01678
8. Foltin, J. P., Lisboa, A. C. L., De Klerk, A. Oil shale pyrolysis: conversion dependence of kinetic parameters. Energy Fuels, 2017, 31(7), 6766–6776.
https://doi.org/10.1021/acs.energyfuels.7b00578
9. Han, X., Kulaots, I., Jiang, X., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045
10. Liu, Q. Q., Han, X. X., Li, Q. Y., Huang, Y. R., Jiang, X. M. TG-DSC analysis of pyrolysis process of two Chinese oil shales. J. Therm. Anal. Calorim., 2014, 116, 511–517.
https://doi.org/10.1007/s10973-013-3524-2
11. Oja ,V., Suuberg, E. M. Oil shale processing, chemistry and technology. In: Encyclopedia of Sustainability Science and Technology (Meyers, R. A., ed.). Springer, New York, 2012, 7457–7491.
12. Le Doan, T. V., Bostrom, N. W., Burnham, A. K., Kleinberg, R. L., Pomerantz, A. E., Allix, P. Green River oil shale pyrolysis: semi-open conditions. Energy Fuels, 2013, 27(11), 6447–6459.
https://doi.org/10.1021/ef401162p
13. Hillier, J. L., Fletcher, T. H. Pyrolysis kinetics of a Green River oil shale using a pressurized TGA. Energy Fuels, 2011, 25(1), 232–239.
https://doi.org/10.1021/ef101115u
14. Akalin, E., Kim, Y. M., Alper, K., Oja, V., Tekin, K., Durukan, I., Siddiqui, M. Z., Karagöz, S. Co-hydrothermal liquefaction of lignocellulosic biomass with Kukersite oil shale. Energy Fuels, 2019, 33(8), 7424–7435.
https://doi.org/10.1021/acs.energyfuels.9b01473
15. U.S. Energy Information Administration. Technically Recoverable Shale Oil and Shale Gas Resources: An Assessment of 137 Shale Formations in 41 Countries Outside the United States, Washington, DC, 2013.
16. Knaus, E., Killen, J., Biglarbigi, K., Crawford, P. An overview of oil shale resources. In: Oil Shale: A Solution to the Liquid Fuel Dilemma(Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.), ACS Symp. Ser., 2010, 1032, 3–20.
https://doi.org/10.1021/bk-2010-1032.ch001
17. Boak, J. Shale-hosted hydrocarbons and hydraulic fracturing. In: Future Energy (Second Edition): Improved, Sustainable and Clean Options for Our Planet, 2014, 117–143.
18. Speight, J. G. Origin and properties of oil shale. In: Shale Oil Production Processes. Gulf Professional Publishing, 2012, 1–33.
https://doi.org/10.1016/C2012-0-00597-2
19. Kiliç, M., Pütün, A. E., Uzun, B. B., Pütün, E. Converting of oil shale and biomass into liquid hydrocarbons via pyrolysis. Energy Convers. Manag., 2014, 78, 461–467.
https://doi.org/10.1016/j.enconman.2013.11.002
20. Nazzal, J. M.. The influence of grain size on the products yield and shale oil composition from the pyrolysis of Sultani oil shale. Energy Convers. Manag., 2008, 49(11), 3278–3286.
https://doi.org/10.1016/j.enconman.2008.03.028
21. Frau, C., Ferrara, F., Orsini, A., Pettinau, A. Characterization of several kinds of coal and biomass for pyrolysis and gasification. Fuel, 2015, 152, 138–145.
https://doi.org/10.1016/j.fuel.2014.09.054
22. Akhtar, J., Amin, N. A. S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew. Sust. Energ. Rev., 2011, 15(3), 1615–1624.
https://doi.org/10.1016/j.rser.2010.11.054
23. Mehmood, M. A., Ye, G., Luo, H., Liu, C., Malik, S., Afzal, I., Xu, J., Ahmad, M. S. Pyrolysis and kinetic analyses of Camel grass (Cymbopogon schoenanthus) for bioenergy. Bioresour. Technol., 2017, 228, 18–24.
https://doi.org/10.1016/j.biortech.2016.12.096
24. Erkiaga, A., Lopez, G., Amutio, M., Bilbao, J., Olazar, M. Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. Chem. Eng. J., 2014, 237, 259–267.
https://doi.org/10.1016/j.cej.2013.10.018
25. Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., Dewil, R. Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew. Energ., 2010, 35(1), 232–242.
https://doi.org/10.1016/j.renene.2009.04.019
26. Strizhakova, Yu. A., Usova, T. V. Current trends in the pyrolysis of oil shale: A review. Solid Fuel Chem., 2008, 42, 197–201.
https://doi.org/10.3103/S0361521908040022
27. Wang, X., Deng, S., Tan, H., Adeosun, A., Vujanović, M., Yang, F., Duić, N. Synergetic effect of sewage sludge and biomass co-pyrolysis: A combined study in thermogravimetric analyzer and a fixed bed reactor. Energy Convers. Manag., 2016, 118, 399–405.
https://doi.org/10.1016/j.enconman.2016.04.014
28. Singh, R. K., Ruj, B. Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel, 2016, 174, 164–171.
https://doi.org/10.1016/j.fuel.2016.01.049
29. Duman, G., Yanik, J. Two-step steam pyrolysis of biomass for hydrogen production. Int. J. Hydrogen Energy, 2017, 42(27), 17000–17008.
https://doi.org/10.1016/j.ijhydene.2017.05.227
30. Lan, W., Chen, G., Zhu, X., Wang, X., Xu, B. Progress in techniques of biomass conversion into syngas. J. Energy Inst., 2015, 88(2), 151–156.
https://doi.org/10.1016/j.joei.2014.05.003
31. Wu, C., Liu, R. Carbon deposition behavior in steam reforming of bio-oil model compound for hydrogen production. Int. J. Hydrogen Energy, 2010, 35(14), 7386–7398.
https://doi.org/10.1016/j.ijhydene.2010.04.166
32. Jin, Q., Wang X., Li, S., Mikulčić, H., Bešenić, T., Deng, S., Vujanović, M., Tan, H., Kumfer, B. M. Synergistic effects during co-pyrolysis of biomass and plastic: Gas, tar, soot, char products and thermogravimetric study. J. Energy Inst., 2019, 92(1), 108–117.
https://doi.org/10.1016/j.joei.2017.11.001
33. Demirbaş, A. Recovery of chemicals and gasoline-range fuels from plastic wastes via pyrolysis. Energ. Source., 2005, 27(14), 1313–1319.
https://doi.org/10.1080/009083190519500
34. Bridgwater, A. V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg., 2012, 38, 68–94.
https://doi.org/10.1016/j.biombioe.2011.01.048
35. Ahmed, N., Zeeshan, M., Iqbal, N., Farooq, M. Z., Shah, S. A. Investigation on bio-oil yield and quality with scrap tire addition in sugarcane bagasse pyrolysis. J. Clean. Prod., 2018, 196, 927–934.
https://doi.org/10.1016/j.jclepro.2018.06.142
36. Moghtaderi, B., Meesri, C., Wall, T. F. Pyrolytic characteristics of blended coal and woody biomass. Fuel, 2004, 83(6), 745–750.
https://doi.org/10.1016/j.fuel.2003.05.003
37. Özsin, G., Pütün, A. E. TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process. Energy Convers. Manag., 2019, 182, 143–153.
https://doi.org/10.1016/j.enconman.2018.12.060
38. Kong, L., Li, G., Jin, L., Hu, H. Pyrolysis behaviors of two coal-related model compounds on a fixed-bed reactor. Fuel Process. Technol., 2015, 129, 113–119.
https://doi.org/10.1016/j.fuproc.2014.09.009
39. Luik, H., Luik, L., Tiikma, L., Vink, N. Parallels between slow pyrolysis of Estonian oil shale and forest biomass residues. J. Anal. Appl. Pyrolysis, 2007, 79(1–2), 205–209.
https://doi.org/10.1016/j.jaap.2006.12.003
40. Urov, K., Sumberg, A. Characteristic of oil shales and shale-like rocks of known deposits and outcrops. Monograph. Oil Shale, 1999, 16(3S), 1–64.
41. Bai, F., Sun, Y., Liu, Y., Li, Q., Guo, M. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energy Convers. Manag., 2015, 97, 374–381.
https://doi.org/10.1016/j.enconman.2015.03.007
42. Akash, B. A., Jaber, J. O. Characterization of shale oil as compared to crude oil and some refined petroleum products. Energ. Source., 2003, 25(12), 1171–1182.
https://doi.org/10.1080/00908310390233612
43. Gavrilova, O., Vilu, R., Vallner, L. A life cycle environmental impact assessment of oil shale produced and consumed in Estonia. Resour. Conserv. Recy., 2010, 55(2), 232–245.
https://doi.org/10.1016/j.resconrec.2010.09.013
44. Ristic, N. D., Djokic, M. R., Konist, A., Van Geem, K. M., Marin, G. B. Quantitative compositional analysis of Estonian shale oil using comprehensive two dimensional gas chromatography. Fuel Process. Technol., 2017, 167, 241–249.
https://doi.org/10.1016/j.fuproc.2017.07.008
45. Demirbas, M. F., Balat, M. Recent advances on the production and utilization trends of bio-fuels: A global perspective. Energy Convers. Manag., 2006, 47(15–16), 2371–2381.
https://doi.org/10.1016/j.enconman.2005.11.014
46. Li, S., Chen, X., Liu, A., Wang, L., Yu, G. Study on co-pyrolysis characteristics of rice straw and Shenfu bituminous coal blends in a fixed bed reactor. Bioresour. Technol., 2014, 155, 252–257.
https://doi.org/10.1016/j.biortech.2013.12.119
47. Wang, Q., Li, X., Wang, K., Zhu, Y., Wang, S. Commercialization and challenges for the next generation of biofuels: Biomass fast pyrolysis. In: 2010 Asia-Pacific Power and Energy Engineering Conference, Chengdu, China, 28–31 March 2010, IEEE, 2010, 1–4.
48. Hu, X., Gholizadeh, M. Biomass pyrolysis: A review of the process development and challenges from initial researches up to the commercialisation stage. J. Energy Chem., 2019, 39, 109–143.
https://doi.org/10.1016/j.jechem.2019.01.024
49. Sharifzadeh, M., Sadeqzadeh, M., Guo, M., Borhani, T. N., Murthy Konda, N. V. S. N., Garcia, M. C., Wang, L., Hallett, J., Shah, N. The multi-scale challenges of biomass fast pyrolysis and bio-oil upgrading: Review of the state of art and future research directions. Prog. Energy Combust. Sci., 2019, 71, 1–80.
https://doi.org/10.1016/j.pecs.2018.10.006
50. Wu, C., Liu, R. Carbon deposition behavior in steam reforming of bio-oil model compound for hydrogen production. Int. J. Hydrogen Energy, 2010,35(14), 7386–7398.
https://doi.org/10.1016/j.ijhydene.2010.04.166
51. Veksha, A., McLaughlin, H., Layzell, D. B., Hill, J. M. Pyrolysis of wood to biochar: Increasing yield while maintaining microporosity. Bioresour. Technol., 2014, 153, 173–179.
https://doi.org/10.1016/j.biortech.2013.11.082
52. Maguyon, M. C. C., Capareda, S. C. Evaluating the effects of temperature on pressurized pyrolysis of Nannochloropsis oculata based on products yields and characteristics. Energy Convers. Manag., 2013, 76, 764–773.
https://doi.org/10.1016/j.enconman.2013.08.033
53. Wang, S., Luo, Z., Pyrolysis of Biomass, In: GREEN – Alternative Energy Resources, Walter de Gruyter GmbH, 2017, 268.
https://doi.org/10.1002/cite.201770908
54. Demirbaş, A. Sustainable cofiring of biomass with coal. Energy Convers. Manag., 2003, 44(9), 1465–1479.
https://doi.org/10.1016/S0196-8904(02)00144-9
55. Armesto, L., Bahillo, A., Cabanillas, A., Veijonen, K., Otero, J., Plumed, A., Salvador, L. Co-combustion of coal and olive oil industry residues in fluidised bed. Fuel, 2003, 82(8), 993–1000.
https://doi.org/10.1016/S0016-2361(02)00397-6
56. Collot, A.-G., Zhuo, Y., Dugwell, D. R., Kandiyoti, R. Co-pyrolysis and co-gasification of coal and biomass in bench-scale fixed-bed and fluidized bed reactors. Fuel, 1999, 78(6), 667–679.
https://doi.org/10.1016/S0016-2361(98)00202-6
57. Chao, C. Y. H., Kwong, P. C. W., Wang, J. H., Cheung, C. W., Kendall, G. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Bioresour. Technol., 2008, 99(1), 83–93.
https://doi.org/10.1016/j.biortech.2006.11.051
58. Haykiri-Acma, H., Yaman, S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis. Fuel, 2007, 86(3), 373–380.
https://doi.org/10.1016/j.fuel.2006.07.005
59. Haykiri-Acma, H., Yaman, S. Interaction between biomass and different rank coals during co-pyrolysis. Renew. Energ., 2010, 35(1), 288–292.
https://doi.org/10.1016/j.renene.2009.08.001
60. Li, S., Chen, X., Liu, A., Wang, L., Yu, G. Co-pyrolysis characteristic of biomass and bituminous coal. Bioresour. Technol., 2015, 179, 414–420.
https://doi.org/10.1016/j.biortech.2014.12.025
61. Weiland, N. T., Means, N. C., Morreale, B. D. Product distributions from isothermal co-pyrolysis of coal and biomass. Fuel, 2012, 94, 563–570.
https://doi.org/10.1016/j.fuel.2011.10.046
62. Li, S., Chen, X., Wang, L., Liu, A., Yu, G. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor. Bioresour. Technol., 2013, 148, 24–29.
https://doi.org/10.1016/j.biortech.2013.08.126
63. Cordero, T., Rodríguez-Mirasol, J., Pastrana, J., Rodríguez, J. J. Improved solid fuels from co-pyrolysis of a high-sulphur content coal and different lignocellulosic wastes. Fuel, 2004, 83(11–12), 1585–1590.
https://doi.org/10.1016/j.fuel.2004.02.013
64. Wang, J., Yan, Q., Zhao, J., Wang, Z., Huang, J., Gao, S., Song, S., Fang, Y. Fast co-pyrolysis of coal and biomass in a fluidized-bed reactor. J. Therm. Anal. Calorim., 2014, 118, 1663–1673.
https://doi.org/10.1007/s10973-014-4043-5
65. Vuthaluru, H. B. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Process. Technol., 2004, 85(2–3), 141–155.
https://doi.org/10.1016/S0378-3820(03)00112-7
66. Park, D. K., Kim, S. D., Lee, S. H., Lee, J. G. Co-pyrolysis characteristics of sawdust and coal blend in TGA and a fixed bed reactor. Bioresour. Technol., 2010, 101(15), 6151–6156.
https://doi.org/10.1016/j.biortech.2010.02.087
67. Krerkkaiwan, S., Fushimi, C., Tsutsumi, A., Kuchonthara, P. Synergetic effect during co-pyrolysis/gasification of biomass and sub-bituminous coal. Fuel Process. Technol., 2013, 115, 11–18.
https://doi.org/10.1016/j.fuproc.2013.03.044
68. Quan, C., Xu, S., An, Y., Liu, X. Co-pyrolysis of biomass and coal blend by TG and in a free fall reactor. J. Therm. Anal. Calorim., 2014, 117, 817–823.
https://doi.org/10.1007/s10973-014-3774-7
69. Soncini, R. M., Means, N. C., Weiland, N. T. Co-pyrolysis of low rank coals and biomass: Product distributions. Fuel, 2013, 112, 74–82.
https://doi.org/10.1016/j.fuel.2013.04.073
70. Sonobe, T., Worasuwannarak, N., Pipatmanomai, S. Synergies in co-pyrolysis of Thai lignite and corncob. Fuel Process. Technol., 2008, 89(12), 1371–1378.
https://doi.org/10.1016/j.fuproc.2008.06.006
71. Sajdak, M., Muzyka, R., Hrabak, J., Słowik, K. Use of plastic waste as a fuel in the co-pyrolysis of biomass: Part III: Optimisation of the co-pyrolysis process. J. Anal. Appl. Pyrolysis, 2015, 112, 298–305.
https://doi.org/10.1016/j.jaap.2015.01.008
72. Zhou, L., Wang, Y., Huang, Q., Cai, J. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process. Technol., 2006, 87(11), 963–969.
https://doi.org/10.1016/j.fuproc.2006.07.002
73. Brebu, M., Ucar, S., Vasile, C., Yanik, J. Co-pyrolysis of pine cone with synthetic polymers. Fuel, 2010, 89(8), 1911–1918.
https://doi.org/10.1016/j.fuel.2010.01.029
74. Martínez, J. D., Veses, A., Mastral, A. M., Murillo, R., Navarro, M. V., Puy, N., Artigues, A., Bartroli, J., Garcia, T. Co-pyrolysis of biomass with waste tyres: Upgrading of liquid bio-fuel. Fuel Process. Technol., 2014, 119, 263–271.
https://doi.org/10.1016/j.fuproc.2013.11.015
75. Rofiqul Islam, M., Haniu, H., Rafiqul Alam Beg, M. Liquid fuels and chemicals from pyrolysis of motorcycle tire waste: Product yields, compositions and related properties. Fuel, 2008, 87(13–14), 3112–3122.
https://doi.org/10.1016/j.fuel.2008.04.036
76. Ilkiliç, C., Aydin, H. Fuel production from waste vehicle tires by catalytic pyrolysis and its application in a diesel engine. Fuel Process. Technol., 2011, 92(5), 1129–1135.
https://doi.org/10.1016/j.fuproc.2011.01.009
77. Smith, K. M., Fowler, G. D., Pullket, S., Graham, N. J. D. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res., 2009, 43(10), 2569–2594.
https://doi.org/10.1016/j.watres.2009.02.038
78. Shao, J., Yan, R., Chen, H., Wang, B., Lee, D. H., Liang, D. T. Pyrolysis characteristics and kinetics of sewage sludge by thermogravimetry Fourier transform infrared analysis. Energy Fuels, 2008, 22(1), 38–45.
https://doi.org/10.1021/ef700287p
79. Chen, B., Han, X., Tong, J., Mu, M., Jiang, X., Wang, S., Shen, J., Ye, X. Studies of fast co-pyrolysis of oil shale and wood in a bubbling fluidized bed. Energy Convers. Manag., 2020, 205, 112356.
https://doi.org/10.1016/j.enconman.2019.112356
80. Chen, B., Han, X., Mu, M., Jiang, X. Studies of the co-pyrolysis of oil shale and wheat straw. Energy Fuels, 2017, 31(7), 6941–6950.
https://doi.org/10.1021/acs.energyfuels.7b00871
81. Yanik, J., Seçim, P., Karakaya, S., Tiikma, L., Luik, H., Krasulina, J., Raik, P., Palu, V. Low-temperature pyrolysis and co-pyrolysis of Göynük oil shale and terebinth berries (Turkey) in an autoclave. Oil Shale, 2011, 28(4), 469–486.
https://doi.org/10.3176/oil.2011.4.02
82. Jiang, H., Deng, S., Chen, J., Zhang, L., Zhang, M., Li, J., Li, S., Li, J. Preliminary study on copyrolysis of spent mushroom substrate as biomass and Huadian oil shale. Energy Fuels, 2016, 30(8), 6342–6349.
83. Johannes, I., Tiikma, L., Luik, H. Synergy in co-pyrolysis of oil shale and pine sawdust in autoclaves. J. Anal. Appl. Pyrolysis, 2013, 104, 341–352.
https://doi.org/10.1016/j.jaap.2013.06.015
84. Dai, M., Yu, Z., Fang, S., Ma, X. Behaviors, product characteristics and kinetics of catalytic co-pyrolysis spirulina and oil shale. Energy Convers. Manag., 2019, 192, 1–10.
https://doi.org/10.1016/j.enconman.2019.04.032
85. Hu, Z., Ma, X., Li, L. The synergistic effect of co-pyrolysis of oil shale and microalgae to produce syngas. J. Energy Inst., 2016, 89(3), 447–455.
https://doi.org/10.1016/j.joei.2015.02.009
86. Bai, J., Chen, X., Shao, J., Jia, C., Wang, Q. Study of breakage of main covalent bonds during co-pyrolysis of oil shale and alkaline lignin by TG-FTIR integrated analysis. J. Energy Inst., 2019, 92(3), 512–522.
https://doi.org/10.1016/j.joei.2018.04.007
87. Ballice, L., Reimert, R. Temperature-programmed co-pyrolysis of Turkish lignite with polypropylene. J. Anal. Appl. Pyrolysis, 2002, 65(2), 207–219.
https://doi.org/10.1016/S0165-2370(01)00195-4
88. Pinto, F., Costa, P., Gulyurtlu, I., Cabrita, I. Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield. J. Anal. Appl. Pyrolysis, 1999, 51(1–2), 39–55.
89. Al-Salem, S. M., Antelava, A., Constantinou, A., Manos, G., Dutta, A. A review on thermal and catalytic pyrolysis of plastic solid waste (PSW). J. Environ. Manage., 2017, 197, 177–198.
https://doi.org/10.1016/j.jenvman.2017.03.084
90. Kumagai, S., Yoshioka, T. Feedstock recycling via waste plastic pyrolysis. J. Jpn. Petrol. Inst., 2016, 59(6), 243–253.
https://doi.org/10.1627/jpi.59.243
91. Tiikma, L., Luik, H., Pryadka, N. Co-pyrolysis of Estonian shales with low-density polyethylene. Oil Shale, 2004, 21(1), 75–85.
92. Bozoglu, C., Karayildirim, T., Yanik, J. Utilization of products obtained from copyrolysis of oil shale and plastic. Oil Shale, 2009, 26(4), 475–490.
https://doi.org/10.3176/oil.2009.4.04
93. Aboulkas, A., Makayssi, T., Bilali, L., El Harfi, K., Nadifiyine, M., Benchanaa, M. Co-pyrolysis of oil shale and plastics: Influence of pyrolysis parameters on the product yields. Fuel Process. Technol., 2012, 96, 209–213.
https://doi.org/10.1016/j.fuproc.2011.12.001
94. Gersten, J., Fainberg, V., Garbar, A., Hetsroni, G., Shindler, Y. Utilization of waste polymers through one-stage low-temperature pyrolysis with oil shale. Fuel, 1999, 78(8), 987–990.
https://doi.org/10.1016/S0016-2361(99)00002-2
95. Ballice, L. Classification of volatile products evolved from the temperature-programmed co-pyrolysis of Turkish oil shales with atactic polypropylene (APP). Energy Fuels, 2001, 15(3), 659–665.
https://doi.org/10.1021/ef0002041
96. Aboulkas, A., El Harfi, K., Nadifiyine, M., Benchanaa, M. Pyrolysis behaviour and kinetics of Moroccan oil shale with polystyrene. Int. J. Energy Eng., 2011, 1(1), 1–11.
97. Hong, Q., Lei, Z., Lidong, Z., Hongpeng, L., Chunxia, J., Qing, W., Meiduan, C. Synergy analysis for co-pyrolysis of oil shale and shale oil sludge. Oil Shale, 2019, 36(3), 370–391.
https://doi.org/10.3176/oil.2019.3.02
98. Lappas, A. A., Dimitropoulos, V. S., Antonakou, E. V., Voutetakis, S. S., Vasalos, I. A. Design, construction, and operation of a transported fluid bed process development unit for biomass fast pyrolysis: Effect of pyrolysis temperature. Ind. Eng. Chem. Res., 2008, 47(3), 742–747.
https://doi.org/10.1021/ie060990i
99. Westerhof, R. J. M., Brilman, D. W. F., Van Swaaij, W. P. M., Kersten, S. R. A. Effect of temperature in fluidized bed fast pyrolysis of biomass: Oil quality assessment in test units. Ind. Eng. Chem. Res., 2010, 49(3), 1160–1168.
https://doi.org/10.1021/ie900885c
100. Demirbas, A. Effect of temperature on pyrolysis products from biomass. Energ. Source. Part A, 2007, 29(4), 329–336.
https://doi.org/10.1080/009083190965794
101. Garcia-Perez, M., Wang, X. S., Shen, J., Rhodes, M. J., Tian, F., Lee W. J., Wu, H., Li, C. Z. Fast pyrolysis of oil mallee woody biomass: Effect of temperature on the yield and quality of pyrolysis products. Ind. Eng. Chem. Res., 2008, 47(6), 1846–1854.
102. Stummann, M. Z., Høj, M., Schandel, C. B., Hansen, A. B., Wiwel, P., Gabrielsen, J., Jensen, P. A., Jensen, A. D. Hydrogen assisted catalytic biomass pyrolysis. Effect of temperature and pressure. Biomass Bioenerg., 2018, 115, 97–107.
https://doi.org/10.1016/j.biombioe.2018.04.012
103. Dufour, A., Girods, P., Masson, E., Rogaume, Y., Zoulalian, A. Synthesis gas production by biomass pyrolysis: Effect of reactor temperature on product distribution. Int. J. Hydrogen Energy, 2009, 34(4), 1726–1734.
https://doi.org/10.1016/j.ijhydene.2008.11.075
104. Zolghadr, A., Biernacki, J. J., Moore, R. J. Biomass fast pyrolysis using a novel microparticle microreactor approach: Effect of particles size, biomass type, and temperature. Energy Fuels, 2019, 33(2), 1146–1156.
https://doi.org/10.1021/acs.energyfuels.8b03395
105. Gaston, K. R., Jarvis, M. W., Pepiot, P., Smith, K. M., Frederick, W. J., Nimlos, M. R. Biomass pyrolysis and gasification of varying particle sizes in a fluidized-bed reactor. Energy Fuels, 2011, 25(8), 3747–3757.
https://doi.org/10.1021/ef200257k
106. Bennadji, H., Smith, K., Serapiglia, M. J., Fisher, E. M. Effect of particle size on low-temperature pyrolysis of woody biomass. Energy Fuels, 2014, 28(12), 7527–7537.
https://doi.org/10.1021/ef501869e
107. Angin, D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresour. Technol., 2013, 128, 593–597.
https://doi.org/10.1016/j.biortech.2012.10.150
108. Klinger, J. L., Westover, T. L., Emerson, R. M., Williams, C. L., Hernandez, S., Monson, G. D., Ryan, J. C. Effect of biomass type, heating rate, and sample size on microwave-enhanced fast pyrolysis product yields and qualities. Appl. Energ., 2018, 228, 535–545.
https://doi.org/10.1016/j.apenergy.2018.06.107
109. El-Sayed, S. A., Khairy, M. Effect of heating rate on the chemical kinetics of different biomass pyrolysis materials. Biofuels, 2015, 6(3–4), 157–170.
https://doi.org/10.1080/17597269.2015.1065590
110. Somerville, M., Deev, A. The effect of heating rate, particle size and gas flow on the yield of charcoal during the pyrolysis of radiata pine wood. Renew. Energ., 2020, 151, 419–425.
https://doi.org/10.1016/j.renene.2019.11.036
111. El Harfi, K., Mokhlisse, A., Ben Chanâa, M. Yields and composition of oil obtained by isothermal pyrolysis of the Moroccan (Tarfaya) oil shales with steam or nitrogen as carrier gas. J. Anal. Appl. Pyrolysis, 2000, 56(2), 207–218.
https://doi.org/10.1016/S0165-2370(00)00095-4
112. Kok, M. V., Senguler, I., Hufnagel, H., Sonel, N. Thermal and geochemical investigation of Seyitomer oil shale. Thermochim. Acta, 2001, 371(1–2), 111–119.
https://doi.org/10.1016/S0040-6031(01)00415-4
113. Han, X. X., Jiang, X. M., Cui, Z. G. Studies of the effect of retorting factors on the yield of shale oil for a new comprehensive utilization technology of oil shale. Appl. Energy, 2009, 86(11), 2381–2385.
https://doi.org/10.1016/j.apenergy.2009.03.014
114. Wang, Q., Sun, B., Hu, A., Bai, J., Li, S. Pyrolysis characteristics of Huadian oil shales. Oil Shale, 2007, 24(2), 147–157.
115. Al-Ayed, O. S., Al-Harahsheh, A., Khaleel, A. M., Al-Harahsheh, M. Oil shale pyrolysis in fixed-bed retort with different heating rates. Oil Shale, 2009, 26(2), 139–147.
https://doi.org/10.3176/oil.2009.2.06
116. Al-Ayed, O. S., Suliman, M. R., Rahman, N. A. Kinetic modeling of liquid generation from oil shale in fixed bed retort. Appl. Energy, 2010, 87(7), 2273–2277.
https://doi.org/10.1016/j.apenergy.2010.02.006
117. Al-Harahsheh, A., Al-Ayed, O., Al-Harahsheh, M., Abu-El-Halawah, R. Heating rate effect on fractional yield and composition of oil retorted from El-lajjun oil shale. J. Anal. Appl. Pyrolysis, 2010, 89(2), 239–243.
https://doi.org/10.1016/j.jaap.2010.08.009
118. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS. Fuel, 2012, 94, 333–341.
https://doi.org/10.1016/j.fuel.2011.09.018
119. Tiwari, P., Deo, M. Detailed kinetic analysis of oil shale pyrolysis TGA data. AIChE J., 2012, 58(2), 505–515.
https://doi.org/10.1002/aic.12589
120. Kök, M. V., Pamir, M. R. Comparative pyrolysis and combustion kinetics of oil shales. J. Anal. Appl. Pyrolysis, 2000, 55(2), 185–194.
https://doi.org/10.1016/S0165-2370(99)00096-0
121. Torrente, M. C., Galán, M. A. Kinetics of the thermal decomposition of oil shale from Puertollano (Spain). Fuel, 2001, 80(3), 327–334.
https://doi.org/10.1016/S0016-2361(00)00101-0
122. Jiang, X. M., Han, X. X., Cui, Z. G. New technology for the comprehensive utilization of Chinese oil shale resources. Energy, 2007, 32(5), 772–777.
https://doi.org/10.1016/j.energy.2006.05.001
123. Syed, S., Qudaih, R., Talab, I., Janajreh, I. Kinetics of pyrolysis and combustion of oil shale sample from thermogravimetric data. Fuel, 2011, 904(4), 1631–1637.
https://doi.org/10.1016/j.fuel.2010.10.033
124. Lü, X., Sun, Y., Lu, T., Bai, F., Viljanen, M. An efficient and general analytical approach to modelling pyrolysis kinetics of oil shale. Fuel, 2014, 135, 182–187.
https://doi.org/10.1016/j.fuel.2014.06.009
125. Razvigorova, M., Budinova, T., Petrova, B., Tsyntsarski, B., Ekinci, E., Ferhat, M. F. Steam pyrolysis of Bulgarian oil shale kerogen. Oil Shale, 2008, 25(1), 27–36.
https://doi.org/10.3176/oil.2008.1.04
126. Pach, M., Zanzi, R., Björnbom, E. Torrefied biomass a substitute for wood and charcoal. In: Proceedings of the 6th Asia-Pacific International Symposium on Combustion and Energy Utilization, Kuala Lumpur, Malaysia, May 20–22, 2002, 6.
127. Önal, E. P., Uzun, B. B., Pütün, A. E. Steam pyrolysis of an industrial waste for bio-oil production. Fuel Process. Technol., 2011, 92(5), 879–885.
https://doi.org/10.1016/j.fuproc.2010.12.006
128. Trane, R., Dahl, S., Skjøth-Rasmussen, M. S., Jensen, A. D. Catalytic steam reforming of bio-oil. Int. J. Hydrogen Energy, 2012, 37(8), 6447–6472.
https://doi.org/10.1016/j.ijhydene.2012.01.023
129. Gil, M. V., Fermoso, J., Rubiera, F., Chen, D. H2 production by sorption enhanced steam reforming of biomass-derived bio-oil in a fluidized bed reactor: An assessment of the effect of operation variables using response surface methodology. Catal. Today, 2015, 242, 19–34.
https://doi.org/10.1016/j.cattod.2014.04.018
130. Xie, H., Yu, Q., Zuo, Z., Han, Z., Yao, X., Qin, Q. Hydrogen production via sorption-enhanced catalytic steam reforming of bio-oil. Int. J. Hydrogen Energy, 2016, 41(4), 2345–2353.
https://doi.org/10.1016/j.ijhydene.2015.12.156
131. Xie, H., Yu, Q., Yao, X., Duan, W., Zuo, Z., Qin, Q. Hydrogen production via steam reforming of bio-oil model compounds over supported nickel catalysts. J. Energy Chem., 2015, 24(3), 299–308.
https://doi.org/10.1016/S2095-4956(15)60315-1
132. Pütün, A., Özbay, N., Pütün, E. Effect of steam on the pyrolysis of biomass. Energ. Source. Part A, 2006, 28(3), 253–262.
https://doi.org/10.1080/009083190890012
133. Pütün, E., Ateş, F., Pütün, A. E. Catalytic pyrolysis of biomass in inert and steam atmospheres. Fuel, 2008, 87(6), 815–824.
https://doi.org/10.1016/j.fuel.2007.05.042
134. Sagehashi, M., Miyasaka, N., Shishido, H., Sakoda, A. Superheated steam pyrolysis of biomass elemental components and Sugi (Japanese cedar) for fuels and chemicals. Bioresour. Technol., 2006, 97(11), 1272–1283.
https://doi.org/10.1016/j.biortech.2005.06.002
135. Mullen, C. A., Boateng, A. A., Goldberg, N. M., Lima, I. M., Laird, D. A., Hicks, K. B. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass Bioenerg., 2010, 34(1), 67–74.
https://doi.org/10.1016/j.biombioe.2009.09.012
136. Giudicianni, P., Cardone, G., Ragucci, R. Cellulose, hemicellulose and lignin slow steam pyrolysis: Thermal decomposition of biomass components mixtures. J. Anal. Appl. Pyrolysis, 2013, 100, 213–222.
https://doi.org/10.1016/j.jaap.2012.12.026
137. Umeki, K., Yamamoto, K., Namioka, T., Yoshikawa, K. High temperature steam-only gasification of woody biomass. Appl. Energy, 2010, 87, 791–798.
https://doi.org/10.1016/j.apenergy.2009.09.035
138. Tennant, M. F., Mazyck, D. W. Steam-pyrolysis activation of wood char for superior odorant removal. Carbon, 2003, 41(12), 2195–2202.
https://doi.org/10.1016/S0008-6223(03)00211-2
139. El Harfi, K., Mokhlisse, A., Ben Chanâa, M. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. J. Anal. Appl. Pyrolysis, 1999, 48(2), 65–76.
https://doi.org/10.1016/S0165-2370(98)00108-9
140. Nazzal, J. M., Williams, P. T. Influence of temperature and steam on the products from the flash pyrolysis of Jordan oil shale. Int. J. Energ. Res., 2002, 26(14), 1207–1219.
https://doi.org/10.1002/er.845
141. Kantarelis, E. Catalytic Steam Pyrolysis of Biomass for Production of Liquid Feedstock. Ph.D. Thesis. Royal Institute of Technology, Stockholm, 2014.
142. Kantarelis, E., Liu, J., Yang, W., Blasiak, W. Sustainable valorization of bamboo via high-temperature steam pyrolysis for energy production and added value materials. Energy Fuels, 2010, 24(11), 6142–6150.
https://doi.org/10.1021/ef100875g
143. Kantarelis, E., Yang, W., Blasiak, W. Production of liquid feedstock from biomass via steam pyrolysis in a fluidized bed reactor. Energy Fuels, 2013, 27(8), 4748–4759.
https://doi.org/10.1021/ef400580x
144. Özbay, N., Uzun B. B., Varol, E. A., Pütün, A. E. Comparative analysis of pyrolysis oils and its subfractions under different atmospheric conditions. Fuel Process. Technol., 2006, 87(11), 1013–1019.
https://doi.org/10.1016/j.fuproc.2006.07.009
145. Özbay, N., Pütün, A. E. Characterization of chars from steam pyrolysis of apricot pulp. Energ. Source. Part A, 2011, 33(16), 1504–1513.
https://doi.org/10.1080/15567030903397958
146. Hapazari, I., Ntuli, V., Parawira, W. Evaluation of single-step steam pyrolysis-activated carbons from Lesotho agro-forestry residues. Tanz. J. Sci., 2011, 37, 120–128.
147. Turner, J., Lu, H., White, I., King, J. C., Phillips, T., Hosking, J. S., Bracegirdle, T. J., Marshall, G. J., Mulvaney, R., Deb, P. Absence of 21st century warming on Antarctic Peninsula consistent with natural variability. Nature, 2016, 535, 411–415.
https://doi.org/10.1038/nature18645
148. Jindarom, C., Meeyoo, V., Rirksomboon, T., Rangsunvigit, P. Thermochemical decomposition of sewage sludge in CO2 and N2 atmosphere. Chemosphere, 2007, 67(8), 1477–1484.
https://doi.org/10.1016/j.chemosphere.2006.12.066
149. Lee, J., Yang , X., Cho, S. H., Kim, J. K., Lee, S. S., Tsang, D. C. W., Ok, Y. S., Kwon, E. E. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl. Energy, 2017, 185, Part 1, 214–222.
https://doi.org/10.1016/j.apenergy.2016.10.092
150. Messenböck, R. C., Dugwell, D. R., Kandiyoti, R. CO2 and steam-gasification in a high-pressure wire-mesh reactor: The reactivity of Daw Mill coal and combustion reactivity of its chars. Fuel, 1999, 78(7), 781–793.
https://doi.org/10.1016/S0016-2361(98)00221-X
151. Naredi, P., Pisupati, S. Effect of CO2 during coal pyrolysis and char burnout in oxy-coal combustion. Energy Fuels, 2011, 25, 2452–2459.
https://doi.org/10.1021/ef200197w
152. Lahijani, P., Zainal, Z. A., Mohammadi, M., Mohamed, A. R. Conversion of the greenhouse gas CO2 to the fuel gas CO via the Boudouard reaction: A review. Renew. Sustain. Energy Rev., 2015, 41, 615–632.
https://doi.org/10.1016/j.rser.2014.08.034
153. Prabowo, B., Umeki, K., Yan, M., Nakamura, M. R., Castaldi, M. J., Yoshikawa, K. CO2-steam mixture for direct and indirect gasification of rice straw in a downdraft gasifier: Laboratory-scale experiments and performance prediction. Appl. Energy, 2014, 113, 670–679.
https://doi.org/10.1016/j.apenergy.2013.08.022
154. Cho, S. H., Lee, J., Kim, K. H., Jeon, Y. J., Kwon, E. E. Carbon dioxide assisted co-pyrolysis of coal and ligno-cellulosic biomass. Energy Convers. Manag., 2016, 118, 243–252.
https://doi.org/10.1016/j.enconman.2016.03.093
155. Lee, J., Yang, X., Song, H., Ok, Y. S., Kwon, E. E. Effects of carbon dioxide on pyrolysis of peat. Energy, 2017, 120, 929–936.
https://doi.org/10.1016/j.energy.2016.11.143
156. Guizani, C., Escudero Sanz, F. J., Salvador, S. Effects of CO2 on biomass fast pyrolysis: Reaction rate, gas yields and char reactive properties. Fuel, 2014, 116, 310–320.
https://doi.org/10.1016/j.fuel.2013.07.101
157. Zhang, H., Xiao, R., Wang, D., He, G., Shao, S., Zhang, J., Zhong, Z. Biomass fast pyrolysis in a fluidized bed reactor under N2, CO2, CO, CH4 and H2atmospheres. Bioresour. Technol., 2011, 102(5), 4258–4264.
https://doi.org/10.1016/j.biortech.2010.12.075
158. Xie, F. F., Wang, Z., Lin, W. G., Song, W. L. Study on thermal conversion of Huadian oil shale under N2 and CO2 atmospheres. Oil Shale, 2010, 27(4), 309–320.
https://doi.org/10.3176/oil.2010.4.04
159. Ye, J., Xiao, J., Huo, X., Gao, Y., Hao, J., Song, M. Effect of CO2 atmosphere on biomass pyrolysis and in-line catalytic reforming. Int. J. Energ. Res., 2020, 44(11), 8936–8950.
https://doi.org/10.1002/er.5602
160. Farrow, T. S., Sun, C., Snape, C. E. Impact of CO2 on biomass pyrolysis, nitrogen partitioning, and char combustion in a drop tube furnace. J. Anal. Appl. Pyrolysis, 2015, 113, 323–331.
https://doi.org/10.1016/j.jaap.2015.02.013
161. Lee, J., Oh, J. I., Ok, Y. S., Kwon, E. E. Study on susceptibility of CO2-assisted pyrolysis of various biomass to CO2. Energy, 2017, 137, 510–517.
https://doi.org/10.1016/j.energy.2017.01.155
162. Tang, L., Yan, Y., Meng, Y., Wang, J., Jiang, P., Pang, C. H., Wu, T. CO2 gasification and pyrolysis reactivity evaluation of oil shale. Energy Procedia, 2019, 158, 1694–1699.
https://doi.org/10.1016/j.egypro.2019.01.394
163. Yaǧmur, S., Durusoy, T. Kinetics of the pyrolysis and combustion of Göynük oil shale. J. Therm. Anal. Calorim., 2006, 86(2), 479–482.
https://doi.org/10.1007/s10973-005-7312-5
164. Nazzal, J. M. Influence of heating rate on the pyrolysis of Jordan oil shale. J. Anal. Appl. Pyrolysis, 2002, 62(2), 225–238.
https://doi.org/10.1016/S0165-2370(01)00119-X
165. Olivella, M. À., De Las Heras, F. X. C. Evaluation of linear kinetic methods from pyrolysis data of Spanish oil shales and coals. Oil Shale, 2008, 25(2), 227–245.
https://doi.org/10.3176/oil.2008.2.05
166. Gersten, J., Fainberg, V., Hetsroni, G., Shindler, Y. Kinetic study of the thermal decomposition of polypropylene, oil shale, and their mixture. Fuel, 2000, 79(13), 1679–1686.
https://doi.org/10.1016/S0016-2361(00)00002-8
167. Johannes, I., Kruusement, K., Veski, R. Evaluation of oil potential and pyrolysis kinetics of renewable fuel and shale samples by Rock-Eval analyzer. J. Anal. Appl. Pyrolysis, 2007, 79(1–2), 183–190.
https://doi.org/10.1016/j.jaap.2006.12.001
168. Qian, J., Wang, J., Li, S. Oil shale development in China. Oil Shale, 2003, 20(3S), 356–359.
169. Li, S., Yue, C. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337–342.
https://doi.org/10.1016/S0016-2361(02)00268-5
170. Williams, P. T., Ahmad, N. Investigation of oil-shale pyrolysis processing conditions using thermogravimetric analysis. Appl. Energy, 2000, 66(2), 113–133.
https://doi.org/10.1016/S0306-2619(99)00038-0
171. Kök, M. V. Evaluation of Turkish oil shales - Thermal analysis approach. Oil Shale, 2001, 18(2), 131–138.
172. Kök, M. V., Pamir, R. Pyrolysis kinetics of oil shales determined by DSC and TG/DTG. Oil Shale, 2003, 20(1), 57–68.
173. Kök, M. V., Guner, G., Bagci, S. Combustion kinetics of oil shales by reaction cell experiments. Oil Shale, 2008, 25(1), 5–16.
https://doi.org/10.3176/oil.2008.1.02
174. Na, J. G., Im, C. H., Chung, S. H., Lee, K. B. Effect of oil shale retorting temperature on shale oil yield and properties. Fuel, 2012, 95, 131–135.
https://doi.org/10.1016/j.fuel.2011.11.029
175. Khalil, A. M. Oil shale pyrolysis and effect of particle size on the composition of shale oil. Oil Shale, 2013, 30(2), 136–146.
https://doi.org/10.3176/oil.2013.2.04
176. Wang, S., Liu, J., Jiang, X., Han, X., Tong, J. Effect of heating rate on products yield and characteristics of non-condensable gases and shale oil obtained by retorting Dachengzi oil shale. Oil Shale, 2013, 30(1), 27–47.
https://doi.org/10.3176/oil.2013.1.04
177. Jaber, J. O., Probert, S. D., Williams, P. T. Evaluation of oil yield from Jordanian oil shales. Energy, 1999, 24(9), 761–781.
https://doi.org/10.1016/S0360-5442(99)00029-8
178. Olukcu, N., Yanik, J., Saglam, M., Yuksel, M. Liquefaction of beypazari oil shale by pyrolysis. J. Anal. Appl. Pyrolysis, 2002, 64(1), 29–41.
https://doi.org/10.1016/S0165-2370(01)00168-1