ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
The oil shale formation mechanism of the Songliao Basin Nenjiang Formation triggered by marine transgression and oceanic anoxic events 3; pp. 89–118
PDF | 10.3176/oil.2021.2.01

Authors
Wentong He, Xuanlong Shan, Youhong Sun, Hansheng Cao, Shaopeng Zheng, Siyuan Su, Shijie Kang
Abstract

The influence of oceanic anoxic events 3 (OAE3) and transgression events during the Coniacian–Santonian boundary period on the sedimentary paleoenvironment of Nenjiang Formation strata and the oil shale formation mechanism is not clear yet. The high-precision determination of elements, stable isotopes and biomarkers of the Nenjiang Formation oil shale samples was tested in this study. The study showed that the source of organic matter (OM) of the Nenjiang Formation oil shale was a mixture of aquatic organisms (algae and bacteria) and higher plants. Some geochemical parameters also indicated that the OM in the formation might contain a certain amount of marine organic matter. Under OAE3, the pCO2 and warm and humid paleoclimate caused an increase in the total organic carbon (TOC) and the organic carbon isotope (δ13Corg )negative deviation near the Santonian–Campanian (S–C) boundary. Seawater entered the Songliao Lake Basin, and the nutrient composition, water density stratification and sulfate content increased. The reducing environment of the bottom water was conducive to the accumulation and burial of organic matter. With increasing sulfate content, the total organic carbon/total sulfur (TOC/TS) in the formation decreased, and the sulfate δ34S produced a negative bias. Under the influence of OAE3 and transgression events, the paleoenvironment of oil shale formation in the Nenjiang Formation was divided into four stages.

References

1. Owens, J. D., Gill, B. C., Jenkyns, H. C., Bates, S. M., Severmann, S., Kuypers, M. M. M., Woodfine, R. G., Lyons, T. W. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Proc. Natl. Acad. Sci. U.S.A., 2013, 110(46), 18407–18412.
https://doi.org/10.1073/pnas.1305304110

2. Arthur, M. A., Jenkyns, H. C., Brumsack, H.-J., Schlanger, S. O. Stratigraphy, geochemistry, and paleoceanography of organic carbon-rich Cretaceous sequences. In: Cretaceous Resources, Events and Rhythms (Ginsburg, R. N., Beaudoin, B., eds.), NATO ASI Series (Series C: Mathematical and Physical Sciences), 1990, 304, 75–119.
https://doi.org/10.1007/978-94-015-6861-6_6

3. Poulsen, C. J., Barron, E. J., Arthur, M. A., Peterson, W. H. Response of the mid-Cretaceous global oceanic circulation to tectonic and CO2 forcings. Paleoceanography, 2001, 16(6), 576–592.
https://doi.org/10.1029/2000PA000579

4. Schlanger, S. O., Arthur, M. A., Jenkyns, H. C., Scholle, P. A. The Cenomanian-Turonian oceanic anoxic event, 1. Stratigraphy and distribution of organic carbon-rich beds and the marine δ13 excursion. In: Marine Petroleum Source Rocks (Brooks, J., Fleet, A. J., eds.), Geological Society, London, Special Publications, 26, 1987, 371–399.
https://doi.org/10.1144/GSL.SP.1987.026.01.24

5. Wagreich, M. “OAE3” – regional Atlantic organic carbon burial during the Coniacian–Santonian. Clim. Past, 2012, 8(5), 1447–1455.
https://doi.org/10.5194/cp-8-1447-2012

6. Deng, C. L., He, H. Y., Pan, Y. X., Zhu, R. X. Chronology of the terrestrial Upper Cretaceous in Songliao Basin, Northeast Asia. Palaeogeogr. Palaeoecol., 2013, 385, 44–54.
https://doi.org/10.1016/j.palaeo.2012.07.028

7. Wan, X. Q., Li, G., Chen, P. J., Yu, T., Ye, D. Q. Isotope stratigraphy of the Cretaceous Qingshankou Formation in Songliao Basin and its correlation with marine Cenomanian stage. Acta Geol. Sin-Engl., 2005, 79(2), 150–156.

8. Norton, I. O. Speculations on Cretaceous tectonic history of the northwest Pacific and a tectonic origin for the Hawaii hotspot. In: Plates, Plumes, and Planetary Processes (Foulger, G. R., Jurdy, D. M., eds.), The Geological Society of America, Special Paper, 2007, 430, 451–470.
https://doi.org/10.1130/2007.2430(22)

9. Yang, Y. T. An unrecognized major collision of the Okhotomorsk Block with East Asia during the Late Cretaceous, constraints on the plate reorganization of the Northwest Pacific. Earth Sci. Rev., 2013, 126, 96–115.
https://doi.org/10.1016/j.earscirev.2013.07.010

10. Chen, R. J. (1980) Characteristics of glauconites from some regions and their significance in analyzing the facies environments. Scientia Geologic Sinica66, 65–79. 
https://link.springer.com/article/10.1346/CCMN.2017.064081

11. Xing, S. J., Xiao, Z. S., Zhang, C. S. Mineralogy Characteristics and Formation Conditions of Glauconite in Taikang Bay. Petroleum Geology of Songliao Continental Basin. Petroleum Industry Press, Beijing, 1985 (in Chinese).

12. Hou, D. J., Li, M. W., Huang, Q. H. Marine transgressional events in the gigantic freshwater lake Songliao: paleontological and geochemical evidence. Org. Geochem., 2000, 31(7–8), 763–768.
https://doi.org/10.1016/S0146-6380(00)00065-6

13. Song, Z. G., Qin, Y., Geroge, S. C., Wang, L., Guo, J. T., Feng, Z. H. A biomarker study of depositional paleoenvironments and source inputs for the massive formation of Upper Cretaceous lacustrine source rocks in the Songliao Basin, China. Palaeogeogr. Palaeoecol., 2013, 385, 137–151.
https://doi.org/10.1016/j.palaeo.2012.12.007

14. Xi, D. P., Wan, X. Q., Feng, Z. Q., Li, S., Feng, Z.H., Jia, J. Z., Jing, X., Si, W. M. Discovery of Late Cretaceous foraminifera in the Songliao Basin: evidence from SK1 and implications for identifying seawater incursions. Chinese Sci. Bull., 2011, 56(3), 253–256.
https://doi.org/10.1007/s11434-010-4269-y

15. Cao, H. S., Kaufman, A. J., Shan, X. L., Cui, H., Zhang, G. J. Sulfur isotope constraints on marine transgression in the lacustrine Upper Cretaceous Songliao Basin, northeastern China. Palaeogeogr. Palaeoecol., 2016, 451, 152–163.
https://doi.org/10.1016/j.palaeo.2016.02.041

16. Huang, Y. J., Yang, G. S., Gu, J., Wang, P. K., Huang, Q. H., Feng, Z. H., Feng, L. J. Marine incursion events in the Late Cretaceous Songliao Basin: constraints from sulfur geochemistry records. Palaeogeogr. Palaeoecol., 2013, 385, 152–161.
https://doi.org/10.1016/j.palaeo.2013.03.017

17. Feng, Z. Q., Jia, C. Z., Xie, X. N., Zhang, S., Feng, Z. H., Cross, T. A. Tectonostratigraphic units and stratigraphic sequences of the nonmarine Songliao Basin, northeast China. Basin Res., 2010, 22(1), 79–95.
https://doi.org/10.1111/j.1365-2117.2009.00445.x

18. Song, T. G. Inversion styles in Songliao basin (northeast China) and estimation of the degree of inversion. Tectonophysics, 1997, 283(1), 173–188.
https://doi.org/10.1016/S0040-1951(97)00147-9

19. Wu, H. C., Zhang, S. H., Jiang, G. Q., Huang, Q. H. The floating astronomical time scale for the terrestrial Late Cretaceous Qingshankou Formation from the Songliao Basin of Northeast China and its stratigraphic and paleoclimate implications. Earth Planet. Sci. Lett., 2009, 278(3–4), 308–323.
https://doi.org/10.1016/j.epsl.2008.12.016

20. Holmes, J. A., Chivas, A. R. Ostracode shell chemistry – Overview. In: The Ostracoda: Applications in Quaternary Research (Holmes, J. A., Chivas, A .R., eds.), Geophysical Monograph Series 131. American Geophysical Union, Washington DC, 2002, 183–204.
https://doi.org/10.1029/131GM10

21. Gao, R., He, C., Qiao, X. A new genus and species of Cretaceous dinoflagellates from two transgressive beds in Songliao Basin, NE China. Acta Palaeontol. Sin., 1992, 31(1), 17–29 (in Chinese with English abstract).

22. Collister, J. W., Lichtfouse, E., Hieshima, G., Hayes, J. M. Partial resolution of sources of n-alkanes in the saline portion of the Parachute Creek Member, Green River Formation (Piceance Creek Basin, Colorado). Org. Geochem., 1994, 21(6–7), 645–659.
https://doi.org/10.1016/0146-6380(94)90010-8

23. Peters, K. E., Moldowan, J. M. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, N. J., Prentice Hall, 1993.

24. Lijmbach, G. W. On the origin of petroleum. Proceedings of the 9th World Petroleum Congress, Tokyo, Japan, 11–16 May 1975. Applied Science Publishers, London, 1975, 2, 357–369.

25. Shanmugam, G. Significance of coniferous rain forests and related organic matter in generating commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 1985, 69(8), 1241–1254.
https://doi.org/10.1306/AD462BC3-16F7-11D7-8645000102C1865D

26. Makeen, Y. M., Abdullah, W. H., Hakimi, M. H. Biological markers and organic petrology study of organic matter in the Lower Cretaceous Abu Gabra sediments (Muglad Basin, Sudan): Origin, type and palaeoenvironmental conditions. Arab. J. Geosci., 2015, 8(1), 489–506.
https://doi.org/10.1007/s12517-013-1203-z

27. Makeen, Y. M., Hakimi, M. H., Abdullah, W. H. The origin, type and preservation of organic matter of the Barremiane-Aptian organic-rich shales in the Muglad Basin, Southern Sudan, and their relation to paleoenvironmental and paleoclimate conditions. Mar. Petrol. Geol., 2015, 65, 187–197.
https://doi.org/10.1016/j.marpetgeo.2015.03.003

28. Makeen, Y. M., Abdullah, W. H., Hakimi, M. H., Elhassan, O. M. A. Organic geochemical characteristics of the Lower Cretaceous Abu Gabra Formation in the Great Moga oilfield, Muglad Basin, Sudan: implications for depositional environment and oil-generation potential. J. Afr. Earth Sci., 2015, 103, 102–112.
https://doi.org/10.1016/j.jafrearsci.2014.12.006

29. Qin, J., Wang, S., Sanei, H., Jiang, C., Chen, Z., Ren, S., Xu, X., Yang, J., Z. Revelation of organic matter sources and sedimentary environment characteristics for shale gas formation by petrographic analysis of middle Jurassic Dameigou formation, northern Qaidam Basin, China. Int. J. Coal Geol., 2018, 195(1), 373–385.
https://doi.org/10.1016/j.coal.2018.06.015

30. Huang, W. Y., Meinschein, W. G. Sterols as ecological indicators. Geochim. Cosmochim. Acta, 1979, 43(5), 739–745.
https://doi.org/10.1016/0016-7037(79)90257-6

31. Mackenzie, A. S., Brassell, S. C., Eglinton, G., Maxwell, J. R. Chemical fossils: the geological fate of steroids. Science, 1982, 217(4559), 491–504.
https://doi.org/10.1126/science.217.4559.491

32. Sinninghe Damste, J. S., Kenig, F., Koopmans, M. P., Köster, J., Schouten S., Hayes, J. M., De Leeuw, J. W. Evidence for gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta, 1995, 59(9), 1895–1900.
https://doi.org/10.1016/0016-7037(95)00073-9

33. Schoell, M., Hwang, R. J., Carlson, R. M. K., Welton, J. E. Carbon isotopic composition of individual biomarkers in gilsonites (Utah). Org. Geochem., 1994, 21(6–7), 673–683.
https://doi.org/10.1016/0146-6380(94)90012-4

34. Mello, M. R., Telnaes, N., Gaglianone, P. C., Chicarelli, M. I., Brassell, S. C., Maxwell, J. R. Organic geochemical characterization of depositional palaeo-environments of source rocks and oils in Brazilian marginal basins. Org. Geochem., 1988, 13(1–3), 31–45.
https://doi.org/10.1016/0146-6380(88)90023-X

35. Sofer, Z. V. Isotopic composition of individual n–alkane in oils. Organic Geochemistry, The 15th Meeting 1992. 23: 210–212.

36. Zhao, M. J., Huang, D. F. Carbon isotopic distributive characteristics of crude oil monomers produced in different sedimentary environments.Petroleum Geology and Experiment, 1995, 17(2), 171–179 (in Chinese).

37. Quan, C., Sun, C., Sun, Y., Sun, G. High resolution estimates of paleo-CO2 levels through the Campanian (Late Cretaceous) based on Ginkgo cuticles. Cretaceous Res., 2009, 30(2), 424–428.
https://doi.org/10.1016/j.cretres.2008.08.004

38. Cerling, T. E. Stable carbon isotopes in palaeosol carbonates. In: Palaeo-weathering, Palaeosurfaces, and Related Continental Deposits (Thiry, M., Simon-Coinçon, R., eds.). Spec. Public. Int. Assoc. Sediment., 1999, 27, 43–60.
https://doi.org/10.1002/9781444304190.ch2

39. Hong, S. K., Lee, Y. I. Contributions of soot to δ13C of organic matter in Cretaceous lacustrine deposits, Gyeongsang Basin, Korea: Implication for paleoenvironmental reconstructions Santonian–Campanian Boundary Event. Palaeogeogr. Palaeoecol., 2013, 371, 54–61.
https://doi.org/10.1016/j.palaeo.2012.12.016

40. Tajika, E. Carbon cycle and climate change during the Cretaceous inferred from a biogeochemical carbon cycle model. Isl. Arc, 1999, 8(2), 293–303.
https://doi.org/10.1046/j.1440-1738.1999.00238.x

41. Yan, J. J. Mid-Cretaceous Biostratigraphy and Palaeoclimate Change from the Qingshankou and Nenjiang Formations in Nong’an area, Jilin Province. Master’s Thesis, China University of Geosciences, 2009.
https://doi.org/10.1016/j.orggeochem.2012.02.003

42. Bechtel, A., Jia, J., Strobl, S. A. I., Sachsenhofer, R. F., Liu, Z., Gratzer, R., Püttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem., 2012, 46, 76–95.

43. Brunner, B., Bernasconi, S. M. A revised isotope fractionation model for dissimilatory sulfate reduction in sulfate reducing bacteria. Geochim. Cosmochim. Acta, 2005, 69(20), 4759–4771.
https://doi.org/10.1016/j.gca.2005.04.015

44. Goldhaber, M. B., Kaplan, I. R. The sulfur cycle. In: The Sea (Goldberg, E. D., ed.), Chichester, UK, 1974, 5, 569–655.

45. Berner, R. A. Burial of organic carbon and pyrite sulfur in the modern ocean; its geochemical and environmental significance. Am. J. Sci., 1982, 282(4), 451–473.
https://doi.org/10.2475/ajs.282.4.451

46. Berner, R. A., Raiswell, R. C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, 1984, 12(6), 365–368.
https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2

47. Berner, R. A., Raiswell, R. Burial of organic carbon and pyrite sulfur in sediments over phanerozoic time: a new theory. Geochim. Cosmochim. Acta, 1983, 47(5), 855–862.
https://doi.org/10.1016/0016-7037(83)90151-5

48. Leventhal, J. S. An interpretation of carbon and sulfur relationships in Black Sea sediments as indicators of environments of deposition. Geochim. Cosmochim. Acta, 1983, 47(1), 133–138.
https://doi.org/10.1016/0016-7037(83)90097-2

49. McKay, J. L., Longstaffe, F. J. Sulphur isotope geochemistry of pyrite from the Upper Cretaceous Marshybank Formation, Western Interior Basin. Sediment. Geology, 2003, 157(3), 175–195.
https://doi.org/10.1016/S0037-0738(02)00233-6

50. Sachse, V. F., Littke, R., Jabour, H., Schühmann, T., Kluth, O. Late Cretaceous (Late Turonian, Coniacian and Santonian) petroleum source rocks as part of an OAE, Tarfaya Basin, Morocco. Mar. Petrol. Geol., 2012, 29(1), 35–49.
https://doi.org/10.1016/j.marpetgeo.2011.08.014

51. Dean, W. E., Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology, 1998, 26(6), 535–538.
https://doi.org/10.1130/0091-7613(1998)026<0535:MASOCB>2.3.CO;2

52. Jia, J., Bechtel, A., Liu, Z., Strobl, S. A. I., Sun, P., Sachsenhofer, R. F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): Implications from organic and inorganic geochemical analyses. Int. J. Coal Geol., 2013, 113, 11–26.
https://doi.org/10.1016/j.coal.2013.03.004

53. Song, Z. G., Qin, Y., Geroge, S. C., Wang, L., Guo, J. T., Feng, Z. H. A biomarker study of depositional paleoenvironments and source inputs for the massive formation of Upper Cretaceous lacustrine source rocks in the Songliao Basin, China. Palaeogeogr. Palaeoecol., 2013, 385, 137–151.
https://doi.org/10.1016/j.palaeo.2012.12.007

54. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P., Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science, 2002, 298(5602), 2372–2374.
https://doi.org/10.1126/science.1078265

55. Canfield, D. E., Thamdrup, B. The production of 34S-depleted sulfide during bacterial disproportionation of elemental sulfur. Science, 1994, 266(5193), 1973–1975.
https://doi.org/10.1126/science.11540246

56. Brenot, A., Carignan, J., France-Lanord, C., Benoît, M. Geological and land use control on δ34S and δ18O of river dissolved sulfate: the Moselle River basin, France. Chem. Geol., 2007, 244(1–2), 25–41.
https://doi.org/10.1016/j.chemgeo.2007.06.003

57. Hirst, D. M. Geochemistry of sediments from eleven Black Sea cores. In: The Black Sea  Geology, Chemistry, and Biology (Degens, E. T., Ross, D. A., eds.), AAPG Memoir, 1974, 20, 430–455.

58. Schoonen, M. A. A. Mechanisms of sedimentary pyrite formation. In: Sulfur Biochemistry – Past and Present (Amend, J. P., Edwards, K. J., Lyons, T. W., eds.), GSA Special Papers, 2004, 379, 117–134.
https://doi.org/10.1130/0-8137-2379-5.117

59. Hou, D. J., Feng, Z. H., Huang, Q. H. Geological and geochemical evidences of anoxic event in the Songliao Basin, China. Geoscience, 2003, 17(3), 311–317 (in Chinese).

60. Gomes, M. L., Hurtgen, M. T. Sulfur isotope fractionation in modern euxinic systems: implications for paleoenvironmental reconstructions of paired sulfate-sulfide isotope records. Geochim. Cosmochim. Acta, 2015, 157, 39–55.
https://doi.org/10.1016/j.gca.2015.02.031

61. Wu, N., Farquhar, J., Fike, D. A. Ediacaran sulfur cycle: insights from sulfur isotope measurements (δ33S and δ34S) on paired sulfate-pyrite in the Huqf supergroup of Oman. Geochim. Cosmochim. Acta, 2015, 164, 352–364.
https://doi.org/10.1016/j.gca.2015.05.031

62. Wang, P. J., Wang, D. P., Du, X. D. The origin of the black shales and the bottom current model for seawater encroachment in the Cretaceous Qingshankou Formation, Songliao Basin, Northeast China. Sedimentary Facies and Palaeogeography, 1996, 16(1), 34–43 (in Chinese).

63. Gill, B. C., Lyons, T. W., Jenkyns, H. C. A global perturbation to the sulfur cycle during the Toarcian Oceanic Anoxic Event. Earth Planet. Sci. Lett., 2011, 312(3–4), 484–496.
https://doi.org/10.1016/j.epsl.2011.10.030

64. Logan, G.. A., Hayes, J. M., Hieshima, G. B., Summons, R. E. Terminal Proterozoic reorganization of biogeochemical cycles. Nature, 1995, 376(6535), 53–56.
https://doi.org/10.1038/376053a0

65. Shen, B., Xiao, S., Kaufman, A. J., Bao, H., Zhou, C., Wang, H. Stratification and mixing of a post-glacial Neoproterozoic ocean: Evidence from carbon and sulfur isotopes in a cap dolostone from northwest China. Earth Planet. Sci. Lett., 2008, 265(1–2), 209–228.
https://doi.org/10.1016/j.epsl.2007.10.005

 

Back to Issue