ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
SOURCE REGIONS AND THE SEDIMENTARY PALEOENVIRONMENT OF MARINE OIL SHALE FROM THE BILONG CO AREA, NORTHERN TIBET, CHINA: AN SR-ND ISOTOPIC STUDY; pp. 306–321
PDF | doi: 10.3176/oil.2012.4.02

Authors
XIUGEN FU, JIAN WANG, YUHONG ZENG, FUWEN TAN, XINGLEI FENG
Abstract

 

The Bilong Co oil shale zone is located in the South Qiangtang depression, northern Tibet, southwestern China. This zone, together with the Shengli River-Changshe Mountain oil shale zone in the North Qiangtang depression, northern Tibetan Plateau, potentially represents the largest marine oil shale resource in China. Altogether 18 samples of oil shale and micritic limestone were collected from the Bilong Co area to determine their Sr and Nd isotopic composition, as well as discuss sediment sources and paleoenvironmental changes. The Sm-Nd model ages for the Bilong Co oil shale samples support its derivation from the Nadi Kangra source whose model ages reflect the origin of volcanic rocks from the older continental crust by its melting. The Nd isotopic composition of the Bilong Co oil shale is similar to that of Late Triassic Nadi Kangri Formation volcanic-volcani­clastic rocks, which implies that this oil shale stems from said rocks.
   Generally, the vertical variations of εNd(0) values in the Bilong Co oil shale section are relatively homogeneous, suggesting a stable provenance for sediments.
   The 87Sr/86Sr ratio of the Bilong Co oil shale is much higher than that of contemporary seawater. Such a high 87Sr/86Sr ratio reflects the original com­posi­tion of the deposited sediment, both chemical and clastic. In the Bilong Co oil shale area, micritic limestone generally has a slightly lower 87Sr/86Sr ratio than oil shale. The Sr isotopic fluctuation in the Bilong Co oil shale is closely connected with sea level change. Sea level rise and consequent marine incursion may change the aquatic environment of the pre-existing lagoon, lowering the 87Sr/86Sr ratio of the precipitation fluid.

 

References

 

  1. Qian, J. L. China’s oil business is going ahead. Oil Shale, 2006, 23(4), 295.

  2. Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil shale in China. Petroleum Industry Press, Beijing, 2009, 157–167 (in Chinese with English abstract).

  3. Qian, J. L., Yin, L., Wang, J. Q., Li, S. Y., Han, F., He, Y. G. Oil shale – a supplementary energy of petroleum. China Petrochemical Press, Beijing, 2008, 23 (in Chinese).

  4. Wang, C. S., Zhang, S. M. The discovery of oil shale in the Shuanghu area, northern Tibet, China. Geology in China, 1987, 8, 29–31 (in Chinese).

  5. Fu, X. G., Wang, J., Qu, W. J., Duan, T. Z., Du, A. D., Wang, Z. J., Liu, H. Re-Os (ICP-MS) dating of marine oil shale in the Qiangtang basin, northern Tibet, China. Oil Shale, 2008, 25(1), 47–55.
http://dx.doi.org/10.3176/oil.2008.1.06

  6. Fu, X. G., Wang, J., Zeng, Y. H., Li, Z. X., Wang, Z. J. Geochemical and palyno­logical investigation of the Shengli River marine oil shale (China): Implications for paleoenvironment and paleoclimate. Int. J. Coal Geol., 2009, 78(3), 217–224.
http://dx.doi.org/10.1016/j.coal.2009.02.001

  7. Fu, X. G., Wang, J., Zeng, Y. H., Chen, J., Tan, F. W. Origin and mode of occurrence of trace elements in marine oil shale from the Shengli River area, northern Tibet, China. Oil Shale, 2011, 28(4), 487–506.
http://dx.doi.org/10.3176/oil.2011.4.03

  8. Chen, L., Yi, H. S., Hu, R. Z., Zhong, H., Zou, Y. R. Organic geochemistry of the Early Jurassic oil shale from the Shuanghu area in northern Tibet and the Early Toarcian oceanic anoxic event. Acta Geol. Sin-Engl., 2005, 79(3), 392–397.

  9. Lin, J. H., Yi, H. S., Li, Y., Wang, C. S., Peng, P. A. Characteristics of bio­marker compounds and its implication of Middle Jurassic oil shale sequence in Shuanghu area, northern Tibetan Plateau. Acta Sedimentologica Sinica, 2001, 19(2), 287–292 (in Chinese with English abstract).

10. Yi, H. S., Deng, B., Xiong, S. P. Lower Jurassic oil shale deposition from northern Tibet: chemostratigraphic signals and the early Toarcian anoxic event. In: 18th HKT Workshop Abstracts, 2003, 129–130.

11. Weldeab, S., Siebel, W., Wehausen, R., Emeis, K.-C., Schmiedl, G., Hem­leben, C. Late Pleistocene sedimentation in the Western Mediterranean Sea: Implications for productivity changes and climatic conditions in the catchment areas. Palaeogeogr. Palaeocl., 2003, 190(3-4), 121–137.
http://dx.doi.org/10.1016/S0031-0182(02)00602-8

12. Yin, A., Harrison, T. M. Geologic evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Pl. Sc., 2000, 28, 211–280.
http://dx.doi.org/10.1146/annurev.earth.28.1.211

13. Kapp, P., Yin, A., Manning, C. E., Harrison, T. M., Taylor, M. H., Ding, L. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metermorphic belt, central Tibet. Tectonics, 2003, 22(4), 1043.
http://dx.doi.org/10.1029/2002TC001383

14. Wang, J., Ding, J., Wang, C. S., Tan, F. W., Chen, M., Hu, P., Li, Y. L., Gao, R., Fang, H., Zhu, L. D., Li, Q. S., Zhang, M. H., Du, B. W., Fu, X. G., Li, Z. X., Wan, F. Survey and evaluation on Tibet oil and gas resources. Geological Publishing House, Beijing, 2009, 6 (in Chinese).

15. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. REE Geochemistry of marine oil shale from the Changshe Mountain area, northern Tibet, China. Int. J. Coal Geol., 2010, 81(3), 191–199.
http://dx.doi.org/10.1016/j.coal.2009.12.006

16. Fu, X. G., Wang, J., Tan, F. W., Chen, M., Chen, W. B. The Late Triassic rift-related volcanic rocks from eastern Qiangtang, northern Tibet (China): Age and tectonic implications. Gondwana Res., 2010, 17(1), 135–144.
http://dx.doi.org/10.1016/j.gr.2009.04.010

17. Fu, X. G., Wang, J., Zeng, Y. H., Tan, F. W., Feng, X. L. Concentration and mode of occurrence of trace elements in marine oil shale from the Bilong Co area, northern Tibet, China. Int. J. Coal Geol., 2011, 85(1), 112–122.
http://dx.doi.org/10.1016/j.coal.2010.10.004

18. Ma, J. L., Wei, G. J., Xu, Y. G., Long, W. G. Variations of Sr–Nd–Hf isotopic systematics in basalt during intensive weathering. Chem. Geol., 2010, 269(3-4), 376–385.
http://dx.doi.org/10.1016/j.chemgeo.2009.10.012

19. Liang, X. R., Wei, G. J., Li, X. H., Liu, Y. Precise measurement of 143Nd/144Nd and Sm/Nd ratios using multiple-collectors inductively coupled plasma-mass spectrometry (MC-ICPMS). Geochimica, 2003, 32(1), 91–96 (in Chinese with English abstract).

20. Farmer, G. L., Ball, T. T. Sources of Middle Proterozoic to Early Cambrian siliciclastic sedimentary rocks in the Great Basin: A Nd isotope study. Bull. Geol. Soc. Am., 1997, 109(9), 1193–1205.
http://dx.doi.org/10.1130/0016-7606(1997)109<1193:SOMPTE>2.3.CO;2

21. Boulay, S., Colin, C., Trentesaux, A., Frank, N., Liu, Z. Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geo­chemical investigations on South China Sea sediments. Palaeogeogr. Palaeocl., 2005, 228(3-4), 260–277.
http://dx.doi.org/10.1016/j.palaeo.2005.06.005

22. Wang, Y. X., Yang, J. D., Chen, J., Zhang, K. J., Rao, W. B. The Sr and Nd isotopic variations of the Chinese Loess Plateau during the past 7 Ma: Implications for the East Asian winter monsoon and source areas of loess. Palaeogeogr. Palaeocl., 2007, 249(3-4), 351–361.
http://dx.doi.org/10.1016/j.palaeo.2007.02.010

23. Huang, S. J., Qing, H. R, Huang, P. P., Hu, Z. W., Wang, Q. D., Zou, M. L., Liu, H. N. Evolution of strontium isotopic composition of seawater from Late Permian to Early Triassic based on study of marine carbonates, Zhongliang Mountain, Chongqing, China. Sci. China Ser. D, 2008, 51(4), 528–539.
http://dx.doi.org/10.1007/s11430-008-0034-3

24. Armstrong-Altrin, J. S., Lee, Y. I., Verma, S. P., Worden, R. H. Carbon, oxygen, and strontium isotope geochemistry of carbonate rocks of the upper Miocene Kudankulam Formation, southern India: Implications for paleo­environ­ment and diagenesis. Chem. Erde-Geochem., 2009, 69(1), 45–60.
http://dx.doi.org/10.1016/j.chemer.2008.09.002

25. Frimmel, H. E. Trace element distribution in Neoproterozoic carbonates as palaeoenvironmental indicator. Chem. Geol. 2009, 258(3-4), 338–353.
http://dx.doi.org/10.1016/j.chemgeo.2008.10.033

 

Back to Issue