ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
ANALYSIS AND IDENTIFICATION OF OXYGEN COMPOUNDS IN LONGKOU SHALE OIL AND SHENMU COAL TAR; pp. 322–333
PDF | doi: 10.3176/oil.2012.4.03

Authors
CENGCENG GENG, SHUYUAN LI, YUE MA, CHANGTAO YUE, JILAI HE, Wenzhi Shang
Abstract

Methods of acid-base separation and extrography were used to decompose shale oil of Longkou oil shale (LSO), Shandong province, and coal tar of Shenmu coal (SCT), Shanxi province, both China, into acid, base and neutral fractions. The molecular structure and mass distribution of the oxygen compounds present in LSO and SCT were investigated using gas chromatography-mass spectrometry (GC-MS) and negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). The results of GC-MS showed that oxygen compounds in the acid fractions of LSO and SCT were phenols, indanols, naphthols, phenyl­phenols, fluorenols and phenanthrenols, and their derivatives, while oxygen compounds in neutral fractions 4 and 5 were aliphatic ketones, esters and minor aromatic ketones. The results of ESI FT-ICR MS demonstrated that in LSO, O1, O2, O3, N1O1, N1O2, N1 and N2 compounds were determined with O1 and O2 compounds as the most abundant. SCT contained O1, O2, O3, O4, O5 and O6 compounds, while O2 and O3 compounds dominated.

References

 

  1. Qian, J. L., Yin, L. Oil Shale – Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

  2. Ots, A., Poobus, A., Lausmaa, T. Technical and ecological aspects of shale oil and power cogeneration. Oil Shale, 2011, 28(1S), 101–112.
http://dx.doi.org/10.3176/oil.2011.1S.03

  3. Siirde, A., Roos, I., Martins, A. Estimation of carbon emission factors for the Estonian shale oil industry. Oil Shale, 2011, 28(1S), 127–139.
http://dx.doi.org/10.3176/oil.2011.1S.05

  4. Liu, Q. X. Study on Extraction Phenols of the Medium and Low Temperature Coal Tar from North Shanxi. Northwest University, Shanxi, 2010 (in Chinese).

  5. Moeder, M., Zimmer, D., Stach, J., Herzschuh, R. G.c.-m.s. and m.s.-m.s. inves­tigations of derivatized hydroxyaromatic compounds from coal-derived liquids. Fuel, 1989, 68(11), 1422–1428.
http://dx.doi.org/10.1016/0016-2361(89)90040-9

  6. Granda, M., Menéndez, R., Moinelo, S. R., Bermejo, J., Snape, C. E. Mass spectrometric characterization of polynuclear aromatic nitrogen compounds in coal tar pitches separated by extrography. Fuel, 1993, 72(1), 19–23.
http://dx.doi.org/10.1016/0016-2361(93)90370-H

  7. Zhu, Z. R. Analysis of composition of shale oils from different places. Acta Petrolei Sinica (Petroleum Processing Section), 1993, 9(3), 66–71 (in Chinese).

  8. Guo, S. H., Ruan, Z. The composition of Fushun and Maoming shale oils. Fuel, 1995, 74(11), 1719–1721.
http://dx.doi.org/10.1016/0016-2361(95)00137-T

  9. Zhou, X. R., Shen, L. Y., Ye, R. Rapid determination of phenols in low temperature pyrolysis coal tars by HPLC. Chinese Journal of Analysis Laboratory, 1994, 13(5), 4–6 (in Chinese).

10. Igleslas, M. J., Cuesta, M. J., Suárez-Ruiz, I. Structure of tars derived from low-temperature pyrolysis of pure vitrinites: influence of rank and composition of vitrinites. J. Anal. Appl.  Pyrol., 2001, 58-59, 255–284.
http://dx.doi.org/10.1016/S0165-2370(00)00140-6

11. McClennen, W. H., Meuzelaar, H. L. C., Metcalf, G. S., Hill, G. R. Charac­teriza­tion of phenols and indanols in coal-derived liquids: Use of Curie-point vaporization gas chromatography/mass spectrometry. Fuel, 1983, 62(12), 1422–1429.
http://dx.doi.org/10.1016/0016-2361(83)90110-2

12. Shi, Q., Xu, C. M., Zhao, S. Q., Chung, K. H., Zhang, Y. H., GaoW. Charac­terization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2010, 24(1), 563–569.
http://dx.doi.org/10.1021/ef9008983

13. Shi, Q., Hou, D. J., Chung, K. H., Xu, C. M., Zhao, S. Q., Zhang, Y. H. Cha­rac­terization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2010, 24(4), 2545–2553.
http://dx.doi.org/10.1021/ef901564e

14. Wu, Z. G., Rodgers, R. P., Marshall, A. G. ESI FT-ICR mass spectral analysis of coal liquefaction products. Fuel, 2005, 84(14–15), 1790–1797.
http://dx.doi.org/10.1016/j.fuel.2005.03.025

15. Bae, E. J., Na, J.-G., Chung, S. H., Kim, H. S., Kim, S. Identification of about 30 000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil. Energ. Fuel., 2010, 24(4), 2563–2569.
http://dx.doi.org/10.1021/ef100060b

16. Wu, Z. G., Rodgers, R. P., Marshall, A. G. Compositional determination of acidic species in Illinois No. 6 coal extracts by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2004, 18(5), 1424–1428.
http://dx.doi.org/10.1021/ef049933x

17. Wu, Z. G., Jernstrom, S., Hughey, C. A., Rodgers, R. P., Marshall, A. G. Resolu­tion of 10,000 compositionally distinct components in polar coal extracts by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2003, 17(4), 946–953.
http://dx.doi.org/10.1021/ef030026m

18. Wang, M., Guo, S. H., Ruan, Z., Zhang, L. F. Analysis of oxygen-containing compounds in light fraction of shale oils. I. Separation of oxygen-containing compounds in shale oils. Acta Petrolei Sinica (Petroleum Processing Section), 1993, 9(3), 10–15 (in Chinese).

19. Ćerný, J., Pavliková, H., Machovič, V. Compound-class fractionation of coal-derived liquids by extrography. Fuel, 1990, 69(8), 966–971.
http://dx.doi.org/10.1016/0016-2361(90)90006-C

20. Hughey, C. A., Galasso, S. A., Zumberge, J. E. Detailed compositional com­parison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2007, 86(5-6), 758–768.
http://dx.doi.org/10.1016/j.fuel.2006.08.029

21. Smith, D. F., Schaub, T. M., Kim, S., Rodgers, R. P., Rahimi, P., Tecle­mariam, A., Marshall, A. G. Characterization of acidic species in Athabasca bitumen and bitumen heavy vacuum gas oil by negative-ion ESI FT-ICR MS with and without acid-ion exchange resin prefractionation. Energ. Fuel., 2008, 22(4), 2372–2378.
http://dx.doi.org/10.1021/ef8000345

22. Kim, S., Stanford, L. A., Rodgers, R. P., Marshall, A. G., Walters, C. C., Qian, K., Wenger, L. M., Mankiewicz, P. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem., 2005, 36(8), 1117–1134.
http://dx.doi.org/10.1016/j.orggeochem.2005.03.010

23. Braun, R. L., Burnham, A. K., Reynolds, J. G. Oil and gas evolution kinetics for oil shale and petroleum source rocks determined from pyrolysis - TQMS data at two heating rates. Energ. Fuel., 1992, 6(4), 468–474.
http://dx.doi.org/10.1021/ef00034a017

24. Shi, Q., Yan, Y., Wu, X. J., Li, S. Y., Chung, K. H., Zhao, S. Q., Xu, C. M. Identification of dihydroxy aromatic compounds in a low-temperature pyrolysis coal tar by gas chromatography-mass spectrometry (GC-MS) and Fourier trans­form ion cyclotron resonance mass spectrometry (FT-ICR MS). Energ. Fuel., 2010, 24(10), 5533–5538.
http://dx.doi.org/10.1021/ef1007352

 

Back to Issue