Methods of acid-base separation and extrography were used to decompose shale oil of Longkou oil shale (LSO), Shandong province, and coal tar of Shenmu coal (SCT), Shanxi province, both China, into acid, base and neutral fractions. The molecular structure and mass distribution of the oxygen compounds present in LSO and SCT were investigated using gas chromatography-mass spectrometry (GC-MS) and negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). The results of GC-MS showed that oxygen compounds in the acid fractions of LSO and SCT were phenols, indanols, naphthols, phenylphenols, fluorenols and phenanthrenols, and their derivatives, while oxygen compounds in neutral fractions 4 and 5 were aliphatic ketones, esters and minor aromatic ketones. The results of ESI FT-ICR MS demonstrated that in LSO, O1, O2, O3, N1O1, N1O2, N1 and N2 compounds were determined with O1 and O2 compounds as the most abundant. SCT contained O1, O2, O3, O4, O5 and O6 compounds, while O2 and O3 compounds dominated.
1. Qian, J. L., Yin, L. Oil Shale – Petroleum Alternative. China Petrochemical Press, Beijing, 2010.
2. Ots, A., Poobus, A., Lausmaa, T. Technical and ecological aspects of shale oil and power cogeneration. Oil Shale, 2011, 28(1S), 101–112.
http://dx.doi.org/10.3176/oil.2011.1S.03
3. Siirde, A., Roos, I., Martins, A. Estimation of carbon emission factors for the Estonian shale oil industry. Oil Shale, 2011, 28(1S), 127–139.
http://dx.doi.org/10.3176/oil.2011.1S.05
4. Liu, Q. X. Study on Extraction Phenols of the Medium and Low Temperature Coal Tar from North Shanxi. Northwest University, Shanxi, 2010 (in Chinese).
5. Moeder, M., Zimmer, D., Stach, J., Herzschuh, R. G.c.-m.s. and m.s.-m.s. investigations of derivatized hydroxyaromatic compounds from coal-derived liquids. Fuel, 1989, 68(11), 1422–1428.
http://dx.doi.org/10.1016/0016-2361(89)90040-9
6. Granda, M., Menéndez, R., Moinelo, S. R., Bermejo, J., Snape, C. E. Mass spectrometric characterization of polynuclear aromatic nitrogen compounds in coal tar pitches separated by extrography. Fuel, 1993, 72(1), 19–23.
http://dx.doi.org/10.1016/0016-2361(93)90370-H
7. Zhu, Z. R. Analysis of composition of shale oils from different places. Acta Petrolei Sinica (Petroleum Processing Section), 1993, 9(3), 66–71 (in Chinese).
8. Guo, S. H., Ruan, Z. The composition of Fushun and Maoming shale oils. Fuel, 1995, 74(11), 1719–1721.
http://dx.doi.org/10.1016/0016-2361(95)00137-T
9. Zhou, X. R., Shen, L. Y., Ye, R. Rapid determination of phenols in low temperature pyrolysis coal tars by HPLC. Chinese Journal of Analysis Laboratory, 1994, 13(5), 4–6 (in Chinese).
10. Igleslas, M. J., Cuesta, M. J., Suárez-Ruiz, I. Structure of tars derived from low-temperature pyrolysis of pure vitrinites: influence of rank and composition of vitrinites. J. Anal. Appl. Pyrol., 2001, 58-59, 255–284.
http://dx.doi.org/10.1016/S0165-2370(00)00140-6
11. McClennen, W. H., Meuzelaar, H. L. C., Metcalf, G. S., Hill, G. R. Characterization of phenols and indanols in coal-derived liquids: Use of Curie-point vaporization gas chromatography/mass spectrometry. Fuel, 1983, 62(12), 1422–1429.
http://dx.doi.org/10.1016/0016-2361(83)90110-2
12. Shi, Q., Xu, C. M., Zhao, S. Q., Chung, K. H., Zhang, Y. H., Gao, W. Characterization of basic nitrogen species in coker gas oils by positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2010, 24(1), 563–569.
http://dx.doi.org/10.1021/ef9008983
13. Shi, Q., Hou, D. J., Chung, K. H., Xu, C. M., Zhao, S. Q., Zhang, Y. H. Characterization of heteroatom compounds in a crude oil and its saturates, aromatics, resins, and asphaltenes (SARA) and non-basic nitrogen fractions analyzed by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2010, 24(4), 2545–2553.
http://dx.doi.org/10.1021/ef901564e
14. Wu, Z. G., Rodgers, R. P., Marshall, A. G. ESI FT-ICR mass spectral analysis of coal liquefaction products. Fuel, 2005, 84(14–15), 1790–1797.
http://dx.doi.org/10.1016/j.fuel.2005.03.025
15. Bae, E. J., Na, J.-G., Chung, S. H., Kim, H. S., Kim, S. Identification of about 30 000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil. Energ. Fuel., 2010, 24(4), 2563–2569.
http://dx.doi.org/10.1021/ef100060b
16. Wu, Z. G., Rodgers, R. P., Marshall, A. G. Compositional determination of acidic species in Illinois No. 6 coal extracts by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2004, 18(5), 1424–1428.
http://dx.doi.org/10.1021/ef049933x
17. Wu, Z. G., Jernstrom, S., Hughey, C. A., Rodgers, R. P., Marshall, A. G. Resolution of 10,000 compositionally distinct components in polar coal extracts by negative-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energ. Fuel., 2003, 17(4), 946–953.
http://dx.doi.org/10.1021/ef030026m
18. Wang, M., Guo, S. H., Ruan, Z., Zhang, L. F. Analysis of oxygen-containing compounds in light fraction of shale oils. I. Separation of oxygen-containing compounds in shale oils. Acta Petrolei Sinica (Petroleum Processing Section), 1993, 9(3), 10–15 (in Chinese).
19. Ćerný, J., Pavliková, H., Machovič, V. Compound-class fractionation of coal-derived liquids by extrography. Fuel, 1990, 69(8), 966–971.
http://dx.doi.org/10.1016/0016-2361(90)90006-C
20. Hughey, C. A., Galasso, S. A., Zumberge, J. E. Detailed compositional comparison of acidic NSO compounds in biodegraded reservoir and surface crude oils by negative ion electrospray Fourier transform ion cyclotron resonance mass spectrometry. Fuel, 2007, 86(5-6), 758–768.
http://dx.doi.org/10.1016/j.fuel.2006.08.029
21. Smith, D. F., Schaub, T. M., Kim, S., Rodgers, R. P., Rahimi, P., Teclemariam, A., Marshall, A. G. Characterization of acidic species in Athabasca bitumen and bitumen heavy vacuum gas oil by negative-ion ESI FT-ICR MS with and without acid-ion exchange resin prefractionation. Energ. Fuel., 2008, 22(4), 2372–2378.
http://dx.doi.org/10.1021/ef8000345
22. Kim, S., Stanford, L. A., Rodgers, R. P., Marshall, A. G., Walters, C. C., Qian, K., Wenger, L. M., Mankiewicz, P. Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org. Geochem., 2005, 36(8), 1117–1134.
http://dx.doi.org/10.1016/j.orggeochem.2005.03.010
23. Braun, R. L., Burnham, A. K., Reynolds, J. G. Oil and gas evolution kinetics for oil shale and petroleum source rocks determined from pyrolysis - TQMS data at two heating rates. Energ. Fuel., 1992, 6(4), 468–474.
http://dx.doi.org/10.1021/ef00034a017
24. Shi, Q., Yan, Y., Wu, X. J., Li, S. Y., Chung, K. H., Zhao, S. Q., Xu, C. M. Identification of dihydroxy aromatic compounds in a low-temperature pyrolysis coal tar by gas chromatography-mass spectrometry (GC-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Energ. Fuel., 2010, 24(10), 5533–5538.
http://dx.doi.org/10.1021/ef1007352