Principal component regression (PCR) was used to develop calibration and prediction models for determination of mineral content of complex mineral mixtures by utilizing attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra. The typical constituents of oil shale such as dawsonite, nahcolite, quartz, dolomite, illite, albite, analcime, and kerogen were used to prepare samples to record mid-infrared (IR) spectra. The specified values of dawsonite, nahcolite, quartz, dolomite and kerogen were in good agreement with measured data.
1. Adams, M. J., Awaja, F., Bhargava, S., Grocott, S., Romeo, M. Prediction of oil yield from oil shale minerals using diffuse reflectance infrared Fourier transform spectroscopy. Fuel, 2005, 84(14–15), 1986–1991.
http://dx.doi.org/10.1016/j.fuel.2005.04.011
2. Karabakan, A., Yurum, Y. Effect of the mineral matrix in the reactions of oil shales: 1. Pyrolysis reactions of Turkish Göynük and US Green River oil shales. Fuel, 1998, 77(12), 1303–1309.
http://dx.doi.org/10.1016/S0016-2361(98)00045-3
3. Evans, R. J., Felbeck Jr., G. T. High temperature simulation of petroleum formation - II. Effect of inorganic sedimentary constituents on hydrocarbon formation. Org. Geochem., 1983, 4(3–4), 145–152.
http://dx.doi.org/10.1016/0146-6380(83)90035-9
4. Ballice, L. Effect of demineralization on yield and composition of the volatile products evolved from temperature-programmed pyrolysis of Beypazari (Turkey) oil shale. Fuel Process. Technol., 2005, 86(6), 673–690.
http://dx.doi.org/10.1016/j.fuproc.2004.07.003
5. Vagenas, N. V., Gatsouli, A., Kontoyannis, C. G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta, 2003, 59(4), 831–836.
http://dx.doi.org/10.1016/S0039-9140(02)00638-0
6. Solomon, P. R., Mikins, F. P. Use of Fourier Transform infrared spectroscopy for determining oil shale properties. Fuel, 1980, 59(12), 893–896.
http://dx.doi.org/10.1016/0016-2361(80)90040-X
7. Settle, F. A. Handbook of Instrumental Techniques for Analytical Chemistry. Prentice Hall PTR, New Jersey, 1997.
8. Varmuza, K., Filzmoser, P. Introduction to Multivariate Statistical Analysis in Chemometrics. CRC Press, New York, 2009.
http://dx.doi.org/10.1201/9781420059496
9. Kokot, S., Grigg, M., Panayiotou, H., Phuong, T. D. Data interpretation by some common chemometrics methods. Electroanal., 1998, 10(16), 1081–1088.
http://dx.doi.org/10.1002/(SICI)1521-4109(199811)10:16<1081::AID-ELAN1081>3.0.CO;2-X
10. Rajeshwar, K., Jones, D. B., DuBow, J. B. Characterization of oil shales by differential scanning calorimetry. Anal. Chem., 1981, 53(1), 121–122.
http://dx.doi.org/10.1021/ac00224a031
11. Gemperline, P. Practical Guide to Chemometrics. CRC Press, Boca Raton, 2006.
http://dx.doi.org/10.1201/9781420018301
12. Martens, H., Naes, T. Multivariate Calibration. John Wiley & Sons, New York, 1989.
13. Tuddenham, W. M., Lyon, R. J. P. Infrared techniques in the identification and measurement of minerals. Anal. Chem., 1960, 32(12), 1630–1634.
http://dx.doi.org/10.1021/ac60168a026
14. Estep, P. A., Kovach, J. J., Karr, C. Quantitative infrared multicomponent determination of minerals occurring in coal. Anal. Chem., 1968, 40(2), 358–363.
http://dx.doi.org/10.1021/ac60258a006
15. Morris, R. J. Infrared spectrophotometric analysis of calcium sulfate hydrates using internally standardized mineral oil mulls. Anal. Chem., 1963, 35(10), 1489–1492.
http://dx.doi.org/10.1021/ac60203a019
16. Dachille, F., Roy, R. High-pressure phase transformations in laboratory mechanical mixers and mortars. Nature, 1960, 186, 34–71.
http://dx.doi.org/10.1038/186034a0
17. Crews, P., Rodriguez, J., Jaspars, M. Organic Structure Analysis. Oxford University Press, New York, 1998.
18. Benoudjit, N., Cools, E., Meurens, M., Verleysen, M. Chemometric calibration of infrared spectrometers: selection and validation of variables by non-linear models. Chemom. Intell. Lab. Syst., 2004, 70(1), 47–53.
http://dx.doi.org/10.1016/j.chemolab.2003.10.008
19. McQueen, D. H., Wilson, R., Kinnunen, A. Near and mid-infrared photoacoustic analysis of principal components of foodstuffs. Trends Anal. Chem., 1995, 14(10), 482–492.
http://dx.doi.org/10.1016/0165-9936(95)90809-2