Organic matter (OM) was isolated from two marine oil shales, El-Lajjun and Julia Creek, using NaOH-HCl and humin and humic acid fractions separated. Two treatments were required to reduce humin ash yield to below 11 wt% db. The humin yield of the autoclave method was 80 wt% of OM (dry mineral-matter-free, dmmf), compared to only 20–60 wt% dmmf for the oven method, possibly due to the increased NaOH solution strength and some oxidation. Oven and autoclave methods both gave humin similar in chemical structure to shale OM, regardless of yield. This similarity has implications as to shale OM structure.
1. Maaten., B., Pikkor, H., Konist, A., Siirde, A. Determination of the total sulphur content of oil shale by using different analytical methods. Oil Shale, 2018, 35(2), 144‒153.
https://doi.org/10.3176/oil.2018.2.04
2. Amer, M. W., Fei, Y., Marshall, M., Jackson, W. R., Gorbaty, M., Chaffee, A. L. Recovery of shale oil condensate from different oil shales using a flow-through apparatus. Fuel Process. Technol., 2015, 133, 167‒172.
https://doi.org/10.1016/j.fuproc.2015.01.009
3. Maaten, B., Loo, L., Konist, A., Nešumajev, D., Pihu, T., Külaots, I. Decomposition kinetics of American, Chinese and Estonian oil shales kerogen. Oil Shale, 2016, 33(2), 167‒183.
https://doi.org/10.3176/oil.2016.2.05
4. U.S. Department of the Interior, U.S. Geological Survey. Geology and Resources of Some World Oil-Shale Deposits (by John R. Dyni). Scientific Investigations Report 2005‒5294, Reston, Virginia, 2006. https://pubs.usgs.gov/ sir/2005/5294/pdf/sir5294_508.pdf
5. Zhang, Z., Yang, X., Jia, H., Zhang, H. Kerogen beneficiation from Longkou oil shale using gravity separation method. Energ. Fuel., 2016, 30(4), 2841‒2845.
https://doi.org/10.1021/acs.energyfuels.6b00136
6. Smith, J. W., Higby, L. W. Preparation of organic concentrate from Green River oil shale. Anal. Chem., 1960, 32(12), 1718‒1719.
https://doi.org/10.1021/ac60168a057
7. Robinson, W. E., Lawlor, D., Cummins, J., Fester, J. I. Oxidation of Colorado oil shale. In: Bureau of Mines Report of Investigations (Ankeny, M. J., ed.), 6166. University of Minnesota, 1963, 1‒33.
8. Dancy, T. E., Giedroyc, V. Further researches on the determination of the chemical composition of oil shales. J. Inst. Pet., 1950, 36, 593‒603.
9. Durand, B., Alpern, B. Kerogen: Insoluble Organic Matter from Sedimentary Rocks. Technip Editions, 1980.
10. Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel Process. Technol., 2011, 92(9), 1805‒1811.
https://doi.org/10.1016/j.fuproc.2011.04.037
11. Vandegrift, G. F., Winans, R. E., Scott, R. G., Horwitz, E. P. Quantitative study of the carboxylic acids in Green River oil shale bitumen. Fuel, 1980, 59(9), 627‒633.
https://doi.org/10.1016/0016-2361(80)90124-6
12. Solum, M. S., Mayne, C. L., Orendt, A. M., Pugmire, R. J., Adams, J., Fletcher, T. H. Characterization of macromolecular structure elements from a Green River oil shale, I. Extracts. Energ. Fuel., 2014, 28(1), 453‒465.
https://doi.org/10.1021/ef401918u
13. Aljariri Alhesan, J. S., Amer, M. W., Marshall, M., Jackson, W. R., Gengenbach, T., Qi, Y., Gorbaty, M. L., Cassidy, P. J., Chaffee, A. L. A comparison of the NaOH-HCl and HCl-HF methods of extracting kerogen from two different marine oil shales. Fuel, 2019, 236, 880‒889.
https://doi.org/10.1016/j.fuel.2018.09.058
14. Goklen, K. E., Stoecker, T. J., Baddour, R. F. A method for the isolation of kerogen from Green River oil shale. Ind. Eng. Chem. Prod. Res. Dev., 1984, 23(2), 308‒311.
https://doi.org/10.1021/i300014a028
15. Cao, X., Birdwell, J. E., Chappell, M. A., Li, Y., Pignatello, J. J., Mao, J. Characterization of oil shale, isolated kerogen, and post-pyrolysis residues using advanced 13C solid-state nuclear magnetic resonance spectroscopy. Am. Assoc. Petr. Geol. B., 2013, 9(3), 421‒436.
https://doi.org/10.1306/09101211189
16. Amer, M. W., Marshall, M., Fei, Y., Jackson, W. R., Gorbaty, M. L., Cassidy, P. J., Chaffee, A. L. A comparison of the structure and reactivity of five Jordanian oil shales from different locations. Fuel, 2014, 119, 313‒322.
https://doi.org/10.1016/j.fuel.2013.11.013
17. Australian Government Department of Health NICNAS. Chemical information fact sheet - hydrofluoric acid. https://www.nicnas.gov.au/chemical-information/ fact sheets/hydrofluoric acid. May-2013.
18. McCollum, J. D., Wolff, W. F. Chemical beneficiation of shale kerogen. Energ. Fuel., 1990, 4(1), 11‒14.
https://doi.org/10.1021/ef00019a002
19. Jones, D. G., Dickert, J. J. Jr. Composition and reactions of oil shale of the Green River Formation. Chem. Eng. Prog. Symp. Ser., 1965, 61, 33‒41.
20. Stevenson, F. J., Butler, J. H. A. Chemistry of humic acids and related pigments. In: Organic Geochemistry: Methods and Results (Eglinton, G., Murphy, M. T. J, eds.). Springer-Verlag, Berlin, New York, 1969, 534‒556.
https://doi.org/10.1007/978-3-642-87734-6_28
21. Woskoboenko, F., Stacy, W. O., Raisbeck, D. Physical structure and properties of brown coal. In: The Science of Victorian Brown Coal (Durie, R. A., ed.). Butterworth-Heinemann, Oxford, 1991, 151‒246.
https://doi.org/10.1016/B978-0-7506-0420-8.50009-9
22. Khalili, F. Isolation and characterization of humic acid from Jordanian oil shale. Fuel, 1990, 69(2), 151‒156.
https://doi.org/10.1016/0016-2361(90)90165-M
23. Meshram, P., Purohit, B. K., Sinha, M. K., Sahu, S. K., Pandey, B. D. Demineralization of low grade coal – A review. Renew. Sust. Energ. Rev., 2015, 41, 745‒761.
https://doi.org/10.1016/j.rser.2014.08.072
24. Flaig, W., Beutelspacher, H., Rietz, E. Chemical composition and physical properties of humic substances. In: Soil Components. Vol. 1: Organic Components (Gieseking, J. E., ed.). Springer, Berlin, Heidelberg, 1975, 1‒211.
https://doi.org/10.1007/978-3-642-65915-7_1
25. Wolff, W. F., McCollum, J. D. Method for treating shale. US Patent 4668380A. 26 May 1987.
26. Camier, R. J., Siemon, S. R. Colloidal structure of Victorian brown coals. 2. Rod-shaped particles in brown coal. Fuel, 1978, 57(11), 693‒696.
https://doi.org/10.1016/0016-2361(78)90023-6
27. Jackson, W. R., Bongers, G. D., Redlich, P. J., Favas, G., Fei, Y., Patti, A. F., Johns, R. B. Characterisation of brown coal humic acids and modified humic acids using pyrolysis gcms and other techniques. Int. J. Coal Geol., 1996, 32(1‒4), 229‒240.
https://doi.org/10.1016/S0166-5162(96)00038-9
28. Aljariri Alhesan, J. S., Fei, Y., Marshall, M., Jackson, W. R., Qi, Y., Chaffee, A. L., Cassidy, P. J. Long time, low temperature pyrolysis of El-Lajjun oil shale. J. Anal. Appl. Pyrol., 2018, 130, 135‒141.
https://doi.org/10.1016/j.jaap.2018.01.017
29. Qi, Y., Hann, W., Subagyono, D. J. N., Fei, Y., Marshall, M., Jackson, W. R., Patti, A. F., Chaffee, A. L. Characterisation of the products of low temperature pyrolysis of Victorian brown coal in a semi-continuous/flow through system. Fuel, 2018, 234, 1422‒1430.
https://doi.org/10.1016/j.fuel.2018.07.109
30. ASTM Standard D 439-78. Standard specification for automotive gasoline. Annual Book of ASTM standards, Philadelphia, 1978, 226‒238.
31. ASTM Standard D 3699-78. Standard specification for kerosine. Annual Book of ASTM standards, Philadelphia, 1978, 383‒385.
32. Fei, Y., Marshall, M., Jackson, W. R., Qi, Y., Auxilio, A. R., Chaffee, A. L., Gorbaty, M. L., Daub, G. J., Cassidy, P. J. Long-time-period, low-temperature reactions of Green River oil shale. Energ. Fuel., 2018, 32(4), 4808‒4822.
https://doi.org/10.1021/acs.energyfuels.8b00019
33. Yang, R. T., Das, S. K., Tsai, B. M. C. Coal demineralization using sodium hydroxide and acid solutions. Fuel, 1985, 64(6), 735‒742.
https://doi.org/10.1016/0016-2361(85)90002-X
34. Waugh, A. B., Bowling, K. M. Removal of mineral matter from bituminous coals by aqueous chemical leaching. Fuel Process. Technol., 1984, 9(3), 217‒233.
https://doi.org/10.1016/0378-3820(84)90043-2
35. Slobodin, Ya., Ozerov, J., Solovushkova, G. Separation of humic acids and bitumens from Baisunk oil shale. Goryuchie Slantsy, 1969, (5), 17‒20 (in Russian).
36. Sukhov, V. A., Egorova, O. I., Zamyslov, V. B., Sokolova, T. N., Lukovnikov, A. F. Change in the yield of humic acids on the oxidation of brown coal with oxygen. Khimiya Tverdogo Topliva, 1977, (6), 38‒43 (in Russian).
37. Ogunsola, O. I., Rao, P. D. Formation of humic acids from air-oxidized Alaskan subbituminous coals. Fuel, 1993, 72(8), 1121‒1124.
https://doi.org/10.1016/0016-2361(93)90319-W
38. Wang, P. R., Dai, H. X., Xu, G. Y., Xu, B. L. Optimization of research on the extraction of humic acid from lignite using response surface methodology. In: Lim, L, ed. Proc. International Conference on Advances in Mechanics Engineering (ICAME 2012) - Advanced Materials Research, 588‒589, 75‒79, 2012.
https://doi.org/10.4028/www.scientific.net/AMR.588-589.75
39. Mukherjee, S., Borthakur, P. C. Chemical demineralization/desulphurization of high sulphur coal using sodium hydroxide and acid solutions. Fuel, 2001, 80(14), 2037‒2040.
https://doi.org/10.1016/S0016-2361(01)00094-1
40. Chriswell, C. D., Markuszewski, R., Jewell, D. Humic and phenolic materials released during the chemical cleaning of coal samples by molten caustic leaching. Coal Science and Technology, 1991, 18, 407‒423.
41. Camier, R. J., Siemon, S. R. Colloidal structure of Victorian brown coals. 1. Alkaline digestion of brown coal. Fuel, 1978, 57(2), 85‒88.
https://doi.org/10.1016/0016-2361(78)90103-5