ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
SURFACE MINING TECHNOLOGY IN THE ZONES OF TECTONIC DISTURBANCES, ESTONIAN OIL SHALE DEPOSIT; pp. 326–335
PDF | doi: 10.3176/oil.2013.2S.11

Authors
JURI-RIVALDO PASTARUS, YLO SYSTRA, Ingo Valgma, LJUDMILLA KOLOTOGINA, AIN ANEPAIO, ANTS VANNUS, MARTIN NURME
Abstract

The 150–300 m thick Ediacaran-Devonian sedimentary cover of Estonia, which contains the commercial oil shale deposit, is divided into blocks by linear fracture and tectonic disturbance zones. Along these zones the bedrock is modified, its composition and strength parameters are changed. Often there are restrictions on the use of new surface-mining areas as local people oppose excavation activities near their homes. Indirect methods were used for determination of the uniaxial compressive strength of rock. A wide variety of rock structures were considered and different excavation methods studied. Feasible mining technologies near the zones of tectonic disturbances have been proposed.

References

 

  1. International Stratigraphic Chart. Drafted by Cohen, K. M., Finney, S., Gibbard, P. L., 2012.

  2. Koppelmaa, H., Kivisilla, J. Geological Map of the Crystalline Basement of NE Estonia, 1:200 000, Explanation to the Map. Geol. Survey of Estonia, Tallinn, 1997, 37.

  3. Systra, Y. J., Sokman, K., Kattai, V., Vaher, R. Tectonic dislocations of the Estonian kukersite deposit and their influence on oil shale quality and quantity. In: Georesources and public policy: research, management, environment. 15th Meeting of the Association of European Geological Societies, 16–20.09.2007, Tallinn, Estonia (Hints, O., Kaljo, D., eds.), Eesti Geoloogia Selts, Tallinn, 2007, 74–76.

  4. Sokman, K., Kattai, V., Vaher, R., Systra, Y. J. Influence of tectonic dis­locations on oil shale mining in the Estonia deposit. Oil Shale, 2008, 25(2S), 175–187.
http://dx.doi.org/10.3176/oil.2008.2S.09

  5. Sabanov, S., Tohver, T., Väli, E., Nikitin, O., Pastarus, J.-R. Geological aspects of risk management in oil shale mining. Oil Shale, 2008, 25(2S), 145–152.
http://dx.doi.org/10.3176/oil.2008.2S.06

  6. Pastarus, J.-R., Sabanov, S. Concept of risk assessment for Estonian oil shale mines. In: Proc. 5th International Conference “Environment. Technology. Resources”, Rezekne Augstskolas Izdevnieciba, Rezekne, Latvia, June 16–18, 2005, 237–242.

  7. Valgma, I. Oil shale mining-related research in Estonia. Oil Shale, 2009, 26(4), 445–450.
http://dx.doi.org/10.3176/oil.2009.4.01

  8. Karu, V., Västrik, A., Anepaio, A., Väizene, V., Adamson, A., Valgma, I. Future of oil shale mining technology in Estonia. Oil Shale, 2008, 25(2S), 125–134.
http://dx.doi.org/10.3176/oil.2008.2S.05

  9. Väli, E., Valgma, I., Reinsalu, E. Usage of Estonian oil shale. Oil Shale, 2008, 25(2S), 101–114.
http://dx.doi.org/10.3176/oil.2008.2S.02

10. Reinsalu, E., Valgma, I. Oil shale resources for oil production. Oil Shale, 2007, 24(1), 9–14.

11. Pensa, M., Sellin, A., Luud, A., Valgma, I. An analysis of vegetation restoration on opencast oil shale mines in Estonia. Restor. Ecol., 2004, 12(2), 200–206.
http://dx.doi.org/10.1111/j.1061-2971.2004.00323.x

12. Valgma, I. Post-stripping processes and the landscape of mined areas in Estonian oil shale open casts. Oil Shale, 2000, 17(2), 201–212.

13. Valgma, I. An evaluation of technological overburden thickness limit of oil shale open casts by using draglines. Oil Shale, 1998, 15(2S), 134–146.

14. Valgma, I., Kattel, T. Low depth mining in Estonian oil shale deposit – Abbau von Ölschiefer in Estland. In: Kolloquium Schacht, Strecke und Tunnel 2005: 14. und 15. April 2005, Freiberg/Sachsen. TU Bergakademie, Freiberg, 2005, 213–223.

15. Valgma, I.; Kattel, T. Results of shallow mining in Estonia. In: EU Legislation as it Affects Mining: Proc. TAIEX Workshop in Tallinn: INFRA 22944 TAIEX Workshop, Tallinn, 30.11.–02.12.2006 (Valgma, I., Buhrow, Chr., eds.). Tallinn University of Technology, Tallinn, 2006, 118–125.

16. Valgma, I., Karu, V. Mining in Estonia - a development towards the EU. In: EU Legislation as it Affects Mining: Proc. TAIEX Workshop in Tallinn: INFRA 22944 TAIEX Workshop, Tallinn, 30.11.–02.12.2006 (Valgma, I., Buhrow, Chr., eds.). Tallinn University of Technology, Tallinn, 2006, 98–102.

17. Valgma, I., Nikitin, O., Lohk, M. Oil shale mining development in Estonia. In: EU Legislation as it Affects Mining: Proc. TAIEX Workshop in Tallinn: INFRA 22944 TAIEX Workshop, Tallinn, 30.11.–02.12.2006 (Valgma, I., Buhrow, Chr., eds.). Tallinn University of Technology, Tallinn, 2006, 103–113.

18. Tsiambaous, G., Saroglou, H. Excavatability assessment of rock masses using the geological strength index (GSI). Bull. Eng. Geol. Environ., 2010, 69(1), 13–27.
http://dx.doi.org/10.1007/s10064-009-0235-9

19. Amin, M. M., Huei, C. S., Hamid, Z. A., Ghani, M. K. Rippability assessment of rock based on specific energy and production rate. 2nd Construction Industry Research Achievement International Conference (CIRAIC 2009), 2009, 9.

20. Rock Excavation. Mining and Geological Engineering. University of Arizona, 2003, 196–208.

21. Hints, L. Kukruse Stage. Haljala Stage. In: Geology and Mineral Resources of Estonia (Raukas, A., Teedumäe, A., eds.). Estonian Academy Publishers, Tallinn, 1997, 71–74.

22. Tohver, T. Utilization of waste rock from oil shale mining. Oil Shale, 2010, 27(4), 321–330.
http://dx.doi.org/10.3176/oil.2010.4.05

23. Teedumäe, A. Carbonate rocks. In: Geology and Mineral Resources of Estonia (Raukas, A., Teedumäe, A., eds.). Estonian Academy Publishers, Tallinn, 1997, 348–356.

24. Teedumäe, A. Industrial types of carbonate rocks of the Estonian SSR. Proc. Acad. Sci. ESSR, Geol., 1986, 35(1), 27–34 (in Russian).

25. Vingisaar, P., Taalmann, V. Survey of dolomitization of the Lower Paleozoic carbonate rocks of Estonia. Proc. Acad. Sci. ESSR, Chem. Geol., 1974, 23(4), 237–243 (in Russian).

26. ISRM. International Society of Rock Mechanics Commission on Testing Methods, Suggested Method for Determining Point Load Strength. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1985, 22, 51–60.
http://dx.doi.org/10.1016/0148-9062(85)92327-7

27. Hoek, E. Practical Rock Engineering. 2007. http://www.rocscience.com/hoek/corner/Practical_Rock_Engineering.pdf

28. Diamantis, K., Gartzos, E., Migiros, G. Study of uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng. Geol., 2009, 108(3–4), 199–207.
http://dx.doi.org/10.1016/j.enggeo.2009.07.002

29. Broch, E., Franklin, J A. The point-load strength test. Int. J. Rock Mech. Min. Sci., 1972, 9, 669–697.
http://dx.doi.org/10.1016/0148-9062(72)90030-7

30. Bieniawski, Z. T. The point load test in geotechnical practice. Eng. Geol., 1975, 9(1), 1–11.
http://dx.doi.org/10.1016/0013-7952(75)90024-1

31. Rusnak, J., Mark, C. Using the point load test to determine the uniaxial com­pressive strength of coal measure rock. In Proc. 19th International Conference on Ground Control in Mining (Peng, S. S., Mark, C., eds.). West Virginia University, Morgantown, WV, 2000, 362–371.

32. Rock Classification Hammer 45-D0561. Instruction manual. CONTROLS, 2001, 12 pp.

33. Digital Rock Strength Index Apparatus 45-D0550/E. Instruction manual. CONTROLS, 2007, 16 pp.

34. Singh, T. N., Kainthola, A., Venkatesh, A. Correlation between point load index and uniaxial compressive strength for different rock types. Rock Mech. Rock Eng., 2012, 45(2), 259–264.
http://dx.doi.org/10.1007/s00603-011-0192-z

35. Prakoso, W. A., Kulhawy, F. H. Effects of testing conditions on intact rock strength and variability. Geotech. Geol. Eng., 2011, 29, 101–111.
http://dx.doi.org/10.1007/s10706-010-9356-y

36. Kirmanli, C., Ercelebi, S. G. An expert system for hydraulic excavator and truck selection in surface mining. J. S. Afr. I. Min. Metall., 2009, 109, 727–738.

 

Back to Issue