ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
3-D CFD simulation of oil shale drying in fluidized bed and experimental verification; pp. 334–356
PDF | 10.3176/oil.2020.4.06

Authors
Ruitong Dong, Liangzhi Xia, Haonan Wang, Dongsheng Jiao
Abstract

Fluidized bed drying is an economical and high-efficiency deep pre-dehydration technology for oil shale. The mature fluidized bed drying technology, which intensifies the retorting process, was applied to oil shale particles of high moisture content. The main objective of this paper was to explore the 3-D computational fluid dynamics (CFD) numerical simulation and experimental verification of oil shale particles drying in a fluidized bed. The Eulerian modeling incorporating the kinetic theory for granular particles coupled with the k-ε turbulence model was developed. The modeling utilized the drying model with a user-defined functions (UDF) for the simulation. The effects of the specularity coefficient and the particle-particle coefficient of restitution (COR) on oil shale particles hydrodynamics, and of the flue gas temperature and velocity on their drying characteristics were studied. It was shown that with a decrease in the specularity coefficient, the particle velocity increased, while the flue gas velocity, pressure drop and wall shear stress decreased. Decreasing the normal COR tended to increase the axial solid velocity fluctuations and the number of the bubbles formed. The predicted pressure drop and moisture content agreed reasonably with the experimental results at COR = 0.9 and the specularity coefficient = 0.2. The temperature and velocity of flue gas were shown to have a great influence on the drying characteristics of oil shale.

References

1. Dyni, J. R. Geology and resources of some world oil-shale deposits. Oil Shale, 2003, 20(3), 193–252.

2. Wang, Q., Bo, J. R., Sun, B. Z., Sun, J. Strategy of Huadian oil shale comprehensive utilization. Oil Shale, 2005, 22(3), 305–315.

3. Han, X., Kulaots, I., Jiang, X., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045

4. Liu, Z. J., Dong, Q. S., Ye, S. Q. The situation of oil shale resources in China. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 869–876 (in Chinese with English abstract).

5. Li, X., Zhou, H., Wang, Y., Qian, Y., Yang, S. Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier. Energy, 2015, 87, 605–614.
https://doi.org/10.1016/j.energy.2015.05.045

6. Aboulkas, A., El Harfi, K., El Bouadili, A., Nadifiyine, M., Benchanaa, M. Study on the pyrolysis of Moroccan oil shale with poly (ethylene terephthalate). J. Therm. Anal. Calorim., 2010, 100(1), 323–330.
https://doi.org/10.1007/s10973-009-0185-2

7. Al-Harahsheh, M., Al-Ayed, O., Robinson, J., Kingman, S., Al-Harahsheh, A., Tarawneh, K., Saeid, A., Barranco, R. Effect of demineralization and heating rate on the pyrolysis kinetics of Jordanian oil shales. Fuel. Process. Technol., 2011, 92(9), 1805–1811.
https://doi.org/10.1016/j.fuproc.2011.04.037

8. Janković, B. The kinetic modeling of the non-isothermal pyrolysis of Brazilian oil shale: Application of the Weibull probability mixture model. J. Petrol. Sci.Eng., 2013, 111, 25–36.
https://doi.org/10.1016/j.petrol.2013.10.001

9. Lv, W., Li, S., Han, Q., Zhao, Y., Wu, H. Study of the drying process of ginger (Zingiber officinale Roscoe) slices in microwave fluidized bed dryer. DryTechnol., 2016, 34(14), 1690–1699.
https://doi.org/10.1080/07373937.2015.1137932

10. Naz, M. Y., Sulaiman, S. A., Bou-Rabee, M. A. Particle tracking velocimetry investigations on density dependent velocity vector profiles of a swirling fluidized bed. Dry. Technol., 2017, 35(2), 193–202.
https://doi.org/10.1080/07373937.2016.1166124

11. Bennamoun, L., Chen, Z., Afzal, M. T. Microwave drying of wastewater sludge: Experimental and modeling study. Dry. Technol., 2016, 34(2), 235–243.
https://doi.org/10.1080/07373937.2015.1040885

12. Verma, V., Deen, N. G., Padding, J. T., Kuipers, J. A. M. Two-fluid modeling of three-dimensional cylindrical gas–solid fluidized beds using the kinetic theory of granular flow. Chem. Eng. Sci., 2013, 102, 227–245.
https://doi.org/10.1016/j.ces.2013.08.002

13. Huilin, L., Yurong, H., Gidaspow, D. Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow. Chem. Eng. Sci., 2003, 58(7), 1197–1205.
https://doi.org/10.1016/S0009-2509(02)00635-8

14. Loha, C., Chattopadhyay, H., Chatterjee, P. K. Effect of coefficient of restitution in Euler-Euler CFD simulation of fluidized-bed hydrodynamics. Particuology, 2014, 15, 170–177.
https://doi.org/10.1016/j.partic.2013.07.001

15. Fede, P., Simonin, O., Ingram, A. 3D numerical simulation of a lab-scale pressurized dense fluidized bed focussing on the effect of the particle-particle restitution coefficient and particle–wall boundary conditions. Chem. Eng. Sci., 2016, 142, 215–235.
https://doi.org/10.1016/j.ces.2015.11.016

16. Loha, C., Chattopadhyay, H., Chatterjee, P. Euler-Euler CFD modeling of fluidized bed: Influence of specularity coefficient on hydrodynamic behavior. Particuology, 2013, 11(6), 673–680.
https://doi.org/10.1016/j.partic.2012.08.007

17. Zhong, H., Gao, J., Xu, C., Lan, X. CFD modeling the hydrodynamics of binary particle mixtures in bubbling fluidized beds: Effect of wall boundary condition. Powder Technol., 2012, 230, 232–240.
https://doi.org/10.1016/j.powtec.2012.07.037

18. Lan, X., Xu, C., Gao, J., Al-Dahhan, M. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds. Chem. Eng. Sci., 2012, 69(1), 419–430.
https://doi.org/10.1016/j.ces.2011.10.064

19. Assari, M. R., Tabrizi, H. B., Saffar-Avval, M. Numerical simulation of fluid bed drying based on two-fluid model and experimental validation. Appl.Therm. Eng., 2007, 27(2–3) 422–429.
https://doi.org/10.1016/j.applthermaleng.2006.07.028

20. Ranjbaran, M., Zare, D. CFD modeling of microwave-assisted fluidized bed drying of moist particles using two-fluid model. Dry. Technol., 2012, 30(4), 362–376.
https://doi.org/10.1080/07373937.2011.642913

21. Jamaleddine, T. J., Ray, M. B. Drying of sludge in a pneumatic dryer using computational fluid dynamics. Dry. Technol., 2011, 29(3), 308–322.
https://doi.org/10.1080/07373937.2010.496095

22. Gidaspow, D., Bezburuah, R., Ding, J. Hydrodynamics of circulating fluidized beds: Kinetic theory approach. Proceedings of the 7th International Conference on Fluidization, Gold Coast (Australia), 3–8 May 1992.

23. Johnson, P. C., Jackson, R. Frictional–collisional constitutive relations for granular materials with application to plane shearing. JFluid Mech., 1987, 176, 67–93.
https://doi.org/10.1017/S0022112087000570

24. Paláncz, B. A mathematical model for continuous fluidized bed drying. Chem. Eng. Sci., 1983, 38(7), 1045–1059.
https://doi.org/10.1016/0009-2509(83)80026-8

25. Xia, L., Zhang, H., Wang, B., Yu, C., Fan, X. Experimental and numerical analysis of oil shale drying in fluidized bed. Dry. Technol., 2017, 35(7), 802–814.
https://doi.org/10.1080/07373937.2016.1218345

26. Chang, J., Wu, Z., Wang, X., Liu, W. Two- and three-dimensional hydrodynamic modeling of a pseudo-2D turbulent fluidized bed with Geldart B particle. Powder Technol., 2019, 351, 159–168.
https://doi.org/10.1016/j.powtec.2019.04.028

27. Abdelmotalib, H., Youssef, M. A. M., Hassan, A. A., Youn, S. B., Im, I.-T. Influence of the specularity coefficient on hydrodynamics and heat transfer in a conical fluidized bed combustor. Int. Commun. Heat. Mass., 2016, 75, 169–176.
https://doi.org/10.1016/j.icheatmasstransfer.2016.04.018

28. Hu, C., Luo, K., Wang, S., Junjie, L., Fan, J. The effects of collisional parameters on the hydrodynamics and heat transfer in spouted bed: A CFD-DEM study. Powder Technol., 2019, 353, 132–144.
https://doi.org/10.1016/j.powtec.2019.05.020

29. Nabizadeh, A., Hassanzadeh, H., Asadieraghi, M., Hassanpour, A., Moradi, D., Moraveji, M. K., Namin, M. H. A parametric study of the drying process of polypropylene particles in a pilot-scale fluidized bed dryer using Computational Fluid Dynamics. ChemEng. ResDes., 2020, 156, 13–22.
https://doi.org/10.1016/j.cherd.2020.01.005

Back to Issue