In this study, transition metal salts Fe2O3, CoCl2·6H2O and MnSO4·H2O were chosen to be catalysts for Jimsar oil shale pyrolysis. The pyrolysis behaviors of samples in the presence of different catalysts were compared using a thermogravometric (TG) analyzer first. Then the most effective catalytic pyrolysis process was analyzed by thermogravimetry-mass spectrometry (TG-MS). Of the three catalysts investigated, CoCl2·6H2O performed best. With CoCl2·6H2O, the initial reaction temperature of the pyrolysis process was reduced by about 100 °C and the temperature range was decreased from 435–1000 °C to 330–650 °C. The yields of the pyrolysis products CO/ethene and propyne were the highest, while ethene accounted for the major part of CO/ethene. With increasing heating rate, the yields of alkenes and alkynes increased, those of H2O, methane, alkanes and aromatic hydrocarbons decreased, whereas the yields of CO/ethene, H2S, ethane, propene and CO2/propane changed but a little. These results and analysis allowed a conclusion to be made that with CoCl2·6H2O as a catalyst, the most optimal heating rate for Jimsar oil shale pyrolysis was 5 °C/min.
1. Coetzee, S., Neomagus, H., Bunt, J. R., Everson, R. C. Improved reactivity of large coal particles by K2CO3 addition during steam gasification. Fuel Process. Technol., 2013, 114(3), 75‒80.
https://doi.org/10.1016/j.fuproc.2013.03.041
2. Jaffri, G.-e-R., Zhang, J. Y. Catalytic gasification characteristics of mixed black liquor and calcium catalyst in mixing (air/steam) atmosphere. J. Fuel Chem. Technol., 2008, 36(4), 406‒414.
https://doi.org/10.1016/S1872-5813(08)60025-0
3. Öztas, N. A., Yürüm, Y. Pyrolysis of Turkish Zonguldak bituminous coal. Part l. Effect of mineral matter. Fuel, 2000, 79(10), 1221‒1227.
https://doi.org/10.1016/S0016-2361(99)00255-0
4. Ye, D. P., Agnew, J. B., Zhang, D. K. Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel, 1998, 77(11), 1209‒1219.
https://doi.org/10.1016/S0016-2361(98)00014-3
5. Öztas, N. A., Yürüm, Y. Effect of catalysts on the pyrolysis of Turkish Zonguldak bituminous coal. Energy Fuels, 2000, 14(4), 820‒827.
https://doi.org/10.1021/ef9901847
6. Quyn, D. M., Wu, H., Hayashi, J. I., Li, C. Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity. Fuel, 2003, 82(5), 587‒594.
https://doi.org/10.1016/S0016-2361(02)00323-X
7. Wu, H. W., Li, X. J., Hayashi, J. I., Chiba, T., Li, C. Z. Effects of volatile–char interactions on the reactivity of chars from NaCl-loaded Loy Yang brown coal. Fuel, 2005, 84(10), 1221‒1228.
https://doi.org/10.1016/j.fuel.2004.06.037
8. Yu, J. L., Tian, F. J., Chow, M. C., McKenzie, L. J., Li, C. Z. Effect of iron on the gasification of Victorian brown coal with steam: enhancement of hydrogen production. Fuel, 2006, 85(2), 127‒133.
https://doi.org/10.1016/j.fuel.2005.05.026
9. Jiang, H. F., Song, L. H., Cheng, Z. Q., Chen, J., Zhang, L., Zhang, M. Y., Hu, M. J., Li, J. N., Li, J. F. Influence of pyrolysis condition and transition metal salt on the product yield and characterization via Huadian oil shale pyrolysis. J. Anal. Appl. Pyrol., 2015, 112, 230‒236.
https://doi.org/10.1016/j.jaap.2015.01.020
10. Zou, X. W., Yao, J. Z., Yang, X. M., Song, W. L., Lin, W. G. Catalytic effects of metal chlorides on the pyrolysis of lignite. Energy Fuels, 2007, 21(2), 619‒624.
https://doi.org/10.1021/ef060477h
11. Williams, P. T., Chishti, H. M. Two stage pyrolysis of oil shale using a zeolite catalyst. J. Anal. Appl. Pyrol., 2000, 55(2), 217‒234.
https://doi.org/10.1016/S0165-2370(00)00071-1
12. Gai, R. H., Jin, L. J., Zhang, J. B., Wang, J. Y., Hu, H. Q. Effect of inherent and additional pyrite on the pyrolysis behavior of oil shale. J. Anal. Appl. Pyrol., 2014, 105, 342‒347.
https://doi.org/10.1016/j.jaap.2013.11.022
13. Bakr, M. Y., Yokono, T., Sanada, Y., Akiyama, M. Role of pyrite during the thermal degradation of kerogen using in situ high-temperature ESR technique. Energy Fuels, 1991, 5(3), 441‒444.
https://doi.org/10.1021/ef00027a014
14. Metecan, İ. H., Saǧlam, M., Yanik, J., Ballice, L., Yüksel, M. The effect of pyrite catalyst on the hydroliquefaction of Göynük (Turkey) oil shale in the presence of toluene. Fuel, 1999, 78(5), 619‒622.
https://doi.org/10.1016/S0016-2361(98)00182-3
15. Vučelić, D., Marković, V., Vučelić, V., Spiridonović, D., Jovančićević, B., Vitorović, D. Investigation of catalytic effects of indigenous minerals in the pyrolysis of Aleksinac oil shale organic matter. Org. Geochem., 1992, 19(4‒6), 445‒453.
https://doi.org/10.1016/0146-6380(92)90011-L
16. Brendow, K. Global oil shale issues and perspectives. Oil Shale, 2003, 20(1), 81‒92.
17. Bunger, J. W., Crawford, P. M., Johnson, H. R. Is oil shale America’s answer to peak-oil challenge? Oil Gas J., 2004, 102(30), 16‒24.
18. Pan, L. W., Dai, F. Q., Li, G. Q., Liu, S. A TGA/DTA-MS investigation to the influence of process conditions on the pyrolysis of Jimsar oil shale. Energy, 2015, 86(15), 749‒757.
https://doi.org/10.1016/j.energy.2015.04.081
19. Pan, L. W., Dai, F. Q., Tian, Y. Q., Zhang, F. H. Experimental investigation of the sphericity of irregularly shaped oil shale particle groups. Adv. Powder Technol., 2015, 26(1), 66‒72.
https://doi.org/10.1016/j.apt.2014.08.006
20. Pan, L. W., Dai, F. Q., Huang, J. N., Liu, S., Zhang, F. H. Investigation of the gas flow distribution and pressure drop in Xinjiang oil shale retort. Oil Shale, 2015, 32(2), 172‒185.
https://doi.org/10.3176/oil.2015.2.07
21. Pan, L. W., Dai, F. Q., Huang, J. N., Liu, S., Zhang, F. H. Study of a new gas inlet structure designed for Xinjiang oil shale retort. Oil Shale, 2016, 33(1), 69‒79.
https://doi.org/10.3176/oil.2016.1.06
22. Pan, L. W., Dai, F. Q., Huang, J. N., Liu, S., Li, G. Q. Study of the effect of mineral matters on the thermal decomposition of Jimsar oil shale using TG-MS. Thermochim. Acta, 2016, 627‒629, 31‒38.
https://doi.org/10.1016/j.tca.2016.01.013
23. Liu, L. L., Kumar, S., Wang, Z. H., He, Y., Liu, J. Z., Cen, K. F. Catalytic effect of metal chlorides on coal pyrolysis and gasification part I. Combined TG-FTIR study for coal pyrolysis. Thermochim. Acta, 2017, 655, 331‒336.
24. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS. Fuel, 2012, 94, 333‒341.
25. Haddadin, R. A., Mizyed, F. A. Thermogravimetric analysis kinetics of Jordan shale. Ind. Eng. Chem. Proc. Des. Dev., 1974, 13(4), 332‒336.
https://doi.org/10.1021/i260052a004
25. Williams, P. F. V. Thermogravimetry and decomposition kinetics of British Kimmeridge Clay oil shale. Fuel, 1985, 64(4), 540‒545.
https://doi.org/10.1016/0016-2361(85)90090-0
27. Thakur, D. S., Nuttall Jr., H. E. Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry. Ind. Eng. Chem. Res., 1987, 26(7), 1351‒1356.
https://doi.org/10.1021/ie00067a015
28. Xie, X. X., Luo, J. C., Ge, Q. M., Dai, A. J., Zou, T. The influence of catalyst on coal pyrolysis characteristics. Coal Chemical Industry, 2015, 43(4), 38‒42 (in Chinese with English abstract).
29. Mango, F. D. Transition metal catalysis in the generation of petroleum and natural gas. Geochim. Cosmochim. Acta, 1992, 56(1), 553‒555.
https://doi.org/10.1016/0016-7037(92)90153-A
30. Luo, W. G. Wen, L. Y., Yu, F., Pan, Z. Y., Zong, B. N. Study on the hydrogenation of isooctene to isooctane over Ziegler-Natta catalyst. Acta Petrolei Sinica (Petroleum Processing Section), 2007, 23(6), 86‒90 (in Chinese, with English abstract).