ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Possibilities of utilizing organic-poor metalliferous black shales (argillite); pp. 242–267
PDF | 10.3176/oil.2020.3.05

Author
Rein Palvadre
Abstract

The present paper is focused on the possibilities of recovering rare metals molybdenum (Mo), uranium (U) and vanadium (V) from organic-poor metalliferous black shales on an example of Estonian argillite. For this purpose two flowsheets for processing argillite have been proposed: one is based on the separation of organic matter (OM) together with allied rare metals, and the other on the combustion of argillite in the presence of salts without prior separation of OM. For the recovery of rare metals from leaching solutions the anion exchange method was used. The influence of different parameters, such as metals concentrations and pH of leaching solutions, on the sorption process was studied.

References

1. Puura, V. (ed). Geology and Mineral Resources of the Rakvere Phosphorite-bearing Area. Institute of Geology of the Estonian SSR Academy of Sciences, Geological Survey of the Estonian SSR, Valgus Publishers, Tallinn, 1987. P. 211 (in Russian).
https://doi.org/10.3176/oil.2014.1.02

2. Hade, S., Soesoo, A. Estonian graptolite argillites revisited: a future resource? Oil Shale, 2014, 31(1), 4–18.

3. Lippmaa, E., Maremäe, E., Pihlak, A.-T., Aguraiuja, R. Estonian graptolitic argillites – ancient ores or future fuels? Oil Shale, 2009, 26(4), 530–539.
https://doi.org/10.3176/oil.2009.4.08

4. Maremäe, E., Ründal, L., Ahelik, V. Study of the process of multistage leaching of alum shale’s sulphated ashes. Oil Shale, 1991, 8(1), 27–38 (in Russian, Summary in English).

5. Maremäe, E., Johannes, I., Ahelik, V. The percolative leaching of alum shale’s sulphated ashes. Oil Shale, 1991, 8(2), 138–147 (in Russian, Summary in English).

6. Palvadre, R., Ahelik, V. The distribution of some rare metals in the process of separation of organic matter from Estonian Dictyonema argillite. Oil Shale, 1993, 10(4), 271–281.

7. Pelekis, L., Pelekis, Z., Taure, I., Kirret, O., Rajavee, E. Instrumental neutron activation analysis of alum shale from the Maardu deposit. Proceedings of the Academy of Sciences of the Estonian SSR. Chemistry, 1985, 34(3), 161–164 (in Russian).

8. Pelekis, L., Kirret, O., Taure, I., Pelekis, Z., Eglit, G., Rajavee, E., Ahelik, V. Instrumental neutron activation analysis of Estonian alum shale and some other oil shales. Proceedings of the Academy of Sciences of the Estonian SSR. Chemistry, 1988, 37(1), 1–5.

9. Palvadre, R., Ahelik, V. Possibilities of enhancing the efficiency of using organic-poor oil shales. 1. Oil Shale, 1992, 9(2), 145–149 (in Russian, Summary in English).

10. Palvadre, R., Ahelik, V. On the possibilities of utilizing organic-poor oil shales. 2. Oil Shale, 1992, 9(4), 325–329.

11. Palvadre, R., Loog, A., Haldna, Ü., Ahelik, V., Talkop, R. Correlations between components in Estonian graptolitic argillites. Oil Shale, 1984, 1(3), 292–300 (in Russian).

12. Palvadre, R., Utsal, K., Ahelik, V., Haldna, Ü. Investigation of the mineral composition of Estonian graptolitic argillite. Oil Shale, 1984, 1(2), 162–170 (in Russian).

13. Armands, G. Geochemical studies of uranium, molybdenum, and vanadium in a Swedish alum shale. Stockholm Contributions in Geology, University of Stockholm, 1972, 27, 1–148.

14. Leventhal, J. S., Hosterman, J. W. Chemical and mineralogical analysis of Devonian black shale samples from Martin County, KY, Carroll and Washington Counties, OH, Wise County, VA and Overton County, TN, U.S.A. Chemical Geology, 1982, 37, 239–264.
https://doi.org/10.1016/0009-2541(82)90081-X

15. Martins, A. Historical overview of using fluidized-bed technology for oil shale combustion in Estonia. Oil Shale, 2012, 29(1), 85–99.
https://doi.org/10.3176/oil.2012.1.08

16. Maremäe, E. J., Kirret, O. G. Effect of sulphuric acid on alum shale ashes by a high liquid phase content. Oil Shale, 1989, 6(4), 354–361 (in Russian).

17. Kholmogorov, A. G., Kononova, O. N., Pashkov, G. L., Kachin, S. V., Panchenko, O. N., Kalyakina, O. P. Molybdenum recovery from mineral raw materials by hydrometallurgical methods. The European Journal of Mineral Processing and Environmental Protection, 2002, 2(2), 82–93.

18. Laskorin, B. N., Maurina, A. G., Sviridova, R. A. Recovery of molybdenum and vanadium from sulphate solutions by using solid and liquid anionites. In: Col. Ion Exchange Sorbents in Industry, Moscow, 1963, 124–131 (in Russian).

19. Petersen, I. Experiment planning. Valgus, Tallinn, 1966 (in Estonian).

20. Addelman, S. Orthogonal main-effect plans for asymmetrical factorial experiments. Technometrics, 1962, 4(1), 21–46.
https://doi.org/10.1080/00401706.1962.10489985

21. Addelman, S. Symmetrical and asymmetrical fractional factorial plans. Technometrics, 1962, 4(1), 47–58.
https://doi.org/10.1080/00401706.1962.10489986

22. Ruzinov, L. P. Statistical Methods for Optimization of Chemical Processes. Khimiya, Moscow, 1972 (in Russian).

23. Addelman, S. Augmenting factorial plans to accommodate additional two-level factors. Biometrics, 1962, 18(3), 308–322.
https://doi.org/10.2307/2527474

Back to Issue