ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Comparison of chemical and physical activation processes at obtaining adsorbents from Moroccan oil shale; pp. 139–157
PDF | https://doi.org/10.3176/oil.2020.2.04

Authors
Mina Oumam, Abdelkrim Abourriche, Said Mansouri, Mossaab Mouiya, Abdelaziz Benhammou, Younes Abouliatim, Youssef El Hafiane, Hassan Hannache, Marc Birot, René Pailler, Roger Naslain
Abstract

Within the Moroccan natural resources valorisation scheme, new adsorbents have been prepared from oil shale by chemical and physical activation processes. The activation process the authors have developed in this study give effective adsorbent materials. In view of the physico-chemical properties of these materials and application to the treatment of water loaded with a metal (Cr6+ ion) or organic (methylene blue (MB)) pollutant, it is concluded that the chemical activation process of oil shale at low temperature (250 °C) affords the best material. The material’s yield is good in comparison with the physical activation at the same temperature and the process is energy saving differently from that at 450 °C. Moreover, the chemical activation of oil shale with phosphoric acid at 250 °C produces a material with a good yield (about 70%), a high specific surface area (approximately 600 m2/g) and a highly porous structure, which gives it a high retention of methylene blue and the Cr6+ ion.

References

 

1. Oil shales of the world. Their origin, occurrence, and exploitation. Energ. Explor. Exploit., 1990, 8(6), 457–457.
https://doi.org/10.1177/014459879000800612

2. Väizene, V., Valgma, I., Iskül, R., Kolats, M., Nurme, M., Karu, V. High selective oil shale mining. Oil Shale, 2013, 30(2S), 305–325.
https://doi.org/10.3176/oil.2013.2S.10

3. Ranney, M. W. Oil Shale and Tar Sands Technology: Recent Developments. Park Ridge, New Jersey, USA, 1979.

4. Van Graas, G., de Leeuw, J. W., Schenck, P. A., Haverkamp, J. Kerogen of Toarcian shales of the Paris Basin. A study of its maturation by flash pyrolysis techniques. Geochim. Cosmochim. Ac., 1981, 45(12), 2465–2474.
https://doi.org/10.1016/0016-7037(81)90098-3

5. Velts, O., Uibu, M., Kallas, J., Kuusik, R. Waste oil shale ash as a novel source of calcium for precipitated calcium carbonate: Carbonation mechanism, modeling, and product characterization. J. Hazard. Mater., 2011, 195, 139–146.
https://doi.org/10.1016/j.jhazmat.2011.08.019

6. Miao, L., Ji, G., Gao, G., Li, G., Gan, S. Extraction of alumina powders from the oil shale ash by hydrometallurgical technology. Powder Technol., 2011, 207(1–3), 343–347.
https://doi.org/10.1016/j.powtec.2010.11.017

7. Sun, T., Liu, L. L., Wan, L. L., Zhang, Y. P. Effect of silicon dose on preparation and coagulation performance of poly-ferric-aluminum-silicate-sulfate from oil shale ash. Chem. Eng. J., 2010, 163(1–2), 48–54.
https://doi.org/10.1016/j.cej.2010.07.037

8. Gao, G. M., Miao, L. N., Ji, G. J., Zou, H. F., Gan, S. C. Preparation and characterization of silica aerogels from oil shale ash. Mater. Lett., 2009, 63(30), 2721–2724.
https://doi.org/10.1016/j.matlet.2009.09.053

9. Machado, N. R. C. F., Miotto, D. M. M. Synthesis of Na-A and -X zeolites from oil shale ash. Fuel, 2005, 84(18), 2289–2294.
https://doi.org/10.1016/j.fuel.2005.05.003

10. Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208(1–2), 294–305.
https://doi.org/10.1016/j.desal.2006.06.019

11. Abourriche, A., Benhammou, A., El hafiane, Y., Abouliatim, Y., Nibou, L., Oumam, M., Hannache, H., Birot, M., Smith, A. Effects of oil shale addition on the microstructure and mechanical properties of porous ceramics from Moroccan raw clay. IOSR Journal of Applied Chemistry (IOSR-JAC), 2015, 8(5), 13–21.

12. Abourriche, A. K., Oumam, M., Hannache, H., Birot, M., Abouliatim, Y., Benhammou, A., El Hafiane, Y., Abourriche, A. M., Pailler, R., Naslain, R. Comparative studies on the yield and quality of oils extracted from Moroccan oil shale. J. Supercrit. Fluid., 2013, 84, 98–104.
https://doi.org/10.1016/j.supflu.2013.09.018

13. Moreno-Castilla, C., Carrasco-Marin, F., López-Ramón, M. V., Alvarez-Merino, M. A. Chemical and physical activation of olive-mill waste water to produce activated carbons. Carbon, 2001, 39(9), 1415–1420.
https://doi.org/10.1016/S0008-6223(00)00268-2

14. Molina-Sabio, M., Rodriguez-Reinoso, F., Caturla, F., Sellés, M. J. Porosity in granular carbons activated with phosphoric acid. Carbon, 1995, 33(8), 1105–1113.
https://doi.org/10.1016/0008-6223(95)00059-M

15. Benaddi, H., Bandosz, T. J., Jagiello, J., Schwarz, J. A., Rouzaud, J. N., Legras, D., Béguin, F. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, 38(5), 669–674.
https://doi.org/10.1016/S0008-6223(99)00134-7

16. Valix, M., Cheung, W. H., McKay, G. Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption. Chemosphere, 2004, 56(5), 493–501.
https://doi.org/10.1016/j.chemosphere.2004.04.004

17. Castro, J. B., Bonelli, P. R., Cerrella, E. G., Cukierman, A. L. Phosphoric acid activation of agricultural residues and bagasse from sugar cane: influence of the experimental conditions on adsorption characteristics of activated carbons. Ind. Eng. Chem. Res., 2000, 39(11), 4166–4172.
https://doi.org/10.1021/ie0002677

18. Benadjemia, M., Millière, L., Reinert, L., Benderdouche, N., Duclaux, L. Preparation, characterization and methylene blue adsorption of phosphoric acid activated carbons from globe artichoke leaves. Fuel Process. Technol., 2011, 92(6), 1203–1212.
https://doi.org/10.1016/j.fuproc.2011.01.014

19. Bestani, B., Benderdouche, N., Benstaali, B., Belhakem, M., Addou, A. Methylene blue and iodine adsorption onto an activated desert plant. Bioresource Technol., 2008, 99(17), 8441–8444.
https://doi.org/10.1016/j.biortech.2008.02.053

20. Legrouri, K., Khouya, E., Ezzine, M., Hannache, H., Denoyel, R., Pallier, R., Naslain, R. Production of activated carbon from a new precursor molasses by activation with sulphuric acid. J. Hazard. Mater., 2005, 118(1–3), 259–263.
https://doi.org/10.1016/j.jhazmat.2004.11.004

21. Jaguaribe, E. F., Medeiros, L. L., Barreto, M. C. S., Araujo, L. P. The performance of activated carbons from sugarcane bagasse, babassu and coconut shells in removing residual chlorine. Braz. J. Chem. Eng., 2005, 22(1), 41–47.
https://doi.org/10.1590/S0104-66322005000100005

22. Guan, B. T. H., Latif, P. A., Yap, T. Y. H. Physical preparation of activated carbon from sugarcane bagasse and corn husk and its physical and chemical characteristics. Int. J. Eng. Res. Sci. Technol. (IJERST), 2013, 2(3), 1–14.

23. Yang, K., Peng, J., Srinivasakannan, C., Zhang, L., Xia, H., Duan, X. Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour. Technol., 2010, 101(15), 6163–6169.
https://doi.org/10.1016/j.biortech.2010.03.001

24. Caturla, F., Molina-Sabio, M., Rodriguez-Reinoso, F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991, 29(7), 999–1007.
https://doi.org/10.1016/0008-6223(91)90179-M

25. Freeman, J. J., Gimblett, F. G. R., Roberts, R. A., Sing, K. S. W. Studies of activated charcoal cloth. III. Mesopore development induced by phosphate impregnants. Carbon, 1988, 26(1), 7–11.
https://doi.org/10.1016/0008-6223(88)90003-6

26. Calahorro, C. V., Cano, T. C., Serrano, V. G. Effect of acid and heat treatments on surface area and porosity of a Spanish coal with high mineral matter content. Fuel, 1987, 66(4), 479–485.
https://doi.org/10.1016/0016-2361(87)90151-7

27. Han, X., Wang, W., Ma, X. Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chem. Eng. J., 2011, 171(1), 1–8.
https://doi.org/10.1016/j.cej.2011.02.067

28. Avom, J., Mbadcam, J. K., Noubactem, C., Germain, P. Adsorption of methylene blue from an aqueous solution onto activated carbons from palm-tree cobs. Carbon, 1997, 35(3), 365–369.
https://doi.org/10.1016/S0008-6223(96)00158-3

29. Cavalier, J.-C., Chornet, E. Fractionation of peat-derived bitumen into oil and asphaltenes. Fuel, 1978, 57(5), 304–308.
https://doi.org/10.1016/0016-2361(78)90009-1

30. Bekri, O., Ziyad, M. Synthesis of oil shale research and development activities in Morocco. In: Institute of Mining and Minerals Research (Ed.), Proceedings of the 1991 Eastern Oil Shale Symposium, Lexington, Kentucky, USA, 1991, 437–443.

31. Abourriche, A., Oumam, M., Larzek, M., Ichcho, S., Hannache, H., Pailler, R., Naslain, R., Birot, M., Pillot, J.-P. Elaboration and characterization of the pitches from Moroccan oil shale of Tarfaya. .Phys. Chem. News, 2003, 11, 10–15 (in French).

32. Yürüm, Y., Kramer, R., Levy, M. Interaction of kerogen and mineral matrix of an oil shale in an oxidative atmosphere. Thermochim. Acta, 1985, 94(2), 285–293.
https://doi.org/10.1016/0040-6031(85)85272-2

33. Ichcho, S. Adsorbent materials from Moroccan oil shale of Timahdit and their applications in the removal of heavy metals and bacteria. PhD Thesis, Faculty of Sciences Ben M’sik, University of Hassan II, Casablanca, Morocco, 2003 (in French).

34. Christy, A. A., Dahl, B., Kvalheim, O. M. Structural features of resins, asphaltenes and kerogen studied by diffuse reflectance infrared spectroscopy. Fuel, 1989, 68(4), 430–435.
https://doi.org/10.1016/0016-2361(89)90263-9

35. Aboulkas, A., Makayssi, T., Bilali, L., El harfi, K., Nadifiyine, M., Benchanaa, M. Co-pyrolysis of oil shale and high density polyethylene: Structural characterization of the oil. Fuel Process. Technol., 2012, 96, 203–208.
https://doi.org/10.1016/j.fuproc.2011.12.003

36. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc., 1918, 40(9), 1361–1403.
https://doi.org/10.1021/ja02242a004

37. Freundlich, H. M. F. Über die Adsorption in Lösungen. Z. Phys. Chem., 1906, 57, 385–470 (in German).
https://doi.org/10.1515/zpch-1907-5723

38. Giles, C. H., Nakhwa, S. N. Studies in adsorption. XVI. The measurement of specific surface areas of finely divided solids by solution adsorption. J. Appl. Chem., 1962, 12(6), 266–273.
https://doi.org/10.1002/jctb.5010120605

39. Ichcho, S., Khouya, E., Fakhi, S., Ezzine, M., Hannache, H., Pallier, R., Naslain, R. Influence of the experimental conditions on porosity and structure of adsorbents elaborated from Moroccan oil shale of Timahdit by chemical activation. J. Hazard. Mater., 2005, 118(1–3), 45–51.
https://doi.org/10.1016/j.jhazmat.2004.10.009

40. Castro, J. B., Bonelli, P. R., Cerrella, E. G., Cukierman, A. L. Phosphoric acid activation of agricultural residues and bagasse from sugar cane: Influence of the experimental conditions on adsorption characteristics of activated carbons. Ind. Eng. Chem. Res., 2000, 39(11), 4166–4172.
https://doi.org/10.1021/ie0002677

41. Legrouri, K., Ezzine, M., Hannache, H., Donoyel, R., Pallier, R., Naslain, R. Removal of organic and inorganic pollutants by activated carbon elaborated from molasses. Ann. Chim. Sci. Mat., 2001, 8383–8389 (in French).

42. Bacaoui, A., Yaacoubi, A., Bennouna, C., Dahbi, A., Ayele, J., Mazet, M. Characterisation and utilisation of a new activated carbon obtained from Moroccan olive wastes. J. Water Supply Res. T., 1998, 47(2), 68–75.
https://doi.org/10.2166/aqua.1998.12

43. Elharti, M., Legrouri, K., Khouya, E., Hannache, H., Fakhi, S., El Boucchti, M., Hanafi, N., Solhy, A., Hammouti, B. Preparation of adsorbent material from Moroccan oil shale of Timahdit: Optimization of parameters processes and adsorption tests. Der Pharma Chem., 2012, 4(5), 2130–2139.

Back to Issue