ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
The feasibility of in-situ steam injection technology for oil shale underground retorting; pp. 119–138
PDF | https://doi.org/10.3176/oil.2020.2.03

Authors
Zhiqin Kang, Huanyu Xie, Yangsheng Zhao, Jing Zhao
Abstract

The basic principles of in-situ steam injection technology (MTI) for oil shale underground retorting were presented and related technical processes were analyzed. The convection heat transfer of steam enhanced the efficiency of heating the oil shale layer, which shortened the time to achieve a complete pyrolysis of organic matter. Under the influence of steam the migration capacity of oil and gas improved and the oil and gas products were carried out of the production well more quickly. Moreover, by using superheated steam (up to 570 °C) to pyrolyze oil shale, the oil recovery rate exceeded 95%, and the gas production per unit mass was 0.041 m3/kg, at the same time, the quality of oil and gas products greatly improved. The proportion of light oils accounted for 75.38%, and the yield of H2 and CO in pyrolysis gases was increased. The numerical simulation of steam injection indicated that the MTI technology was a rapid and efficient method for oil shale underground retorting to extract oil and gas by using the injection and production wells alternately for injecting steam. It demonstrated that the development period of the MTI technology was only about 300 days for an oil shale reservoir with a well spacing of 50 m, and the roof and floor of the oil shale layer served as thermal and steam insulation. The successful industrial implementation of the MTI technology in the future should alleviate the increasing energy crisis in China and reduce the country’s dependence on imported petroleum.

References

1. Dyni, J. R. Oil Shale. In: 2010 Survey of Energy Resources Executive Summary. World Energy Council, 2010.

2. Kök, M. V., Pamir, M. R. Non-isothermal pyrolysis and kinetics of oil shales. J. Therm. Anal. Calorim., 1999, 56(2), 953‒958.
https://doi.org/10.1023/A:1010107701483

3. Kök, M. V. Heating rate effect on the DSC kinetics of oil shales. J. Therm. Anal. Calorim., 2007, 90(3), 817‒821.
https://doi.org/10.1007/s10973-007-8240-3

4. Li, S. Y., Yue, C. T. Study of pyrolysis kinetics of oil shale. Fuel, 2003, 82(3), 337‒342.
https://doi.org/10.1016/S0016-2361(02)00268-5

5. Qian, J. L., Yin, L., Li, S. Y. Oil Shale ‒ Petroleum Alternative. China Petrochemical Press, Beijing, 2010.

6. Liu, Z. J., Meng, Q. T., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Jia, J. L. Characteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1),15‒41.
https://doi.org/10.3176/oil.2017.1.02

7. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Investigation of Chinese oil shale resources comprehensive utilization performance. Energy, 2012, 42(1), 224‒232.
https://doi.org/10.1016/j.energy.2012.03.066

8. Golubev, N. Solid oil shale heat carrier technology for oil shale retorting. Oil Shale, 2003, 20(3S), 324‒332.

9. Li, X., Zhou, H., Wang, Y., Qian, Y., Yang, S. Thermoeconomic analysis of oil shale retorting processes with gas or solid heat carrier. Energy, 2015, 87, 605‒614.
https://doi.org/10.1016/j.energy.2015.05.045

10. Karu, V., Västrik, A., Anepaio, A., Väizene, V., Adamson, A., Valgma, I. Future of oil shale mining technology in Estonia. Oil Shale, 2008, 25(2S), 125‒134.
https://doi.org/10.3176/oil.2008.2S.04

11. Pan, Y., Zhang, X. M., Liu, S. H., Yang, S. C., Ren, N. A review on technologies for oil shale surface retort. J. Chem. Soc. Pakistan, 2012, 34(6), 1331‒1338.

12. Selberg, A., Viik, M., Pall, P., Tenno, T. Environmental impact of closing of oil shale mines on river water quality in North-Eastern Estonia. Oil Shale, 2009, 26(2), 169‒183.
https://doi.org/10.3176/oil.2009.2.09

13. Reinik, J., Irha, N., Steinnes, E., Piirisalu, E., Aruoja, V., Schultz, E., Leppänen, M. Characterization of water extracts of oil shale retorting residues from gaseous and solid heat carrier processes. Fuel Process. Technol., 2015, 131, 443‒451.
https://doi.org/10.1016/j.fuproc.2014.12.024

14. Nei, L., Kruusma, J., Ivask, M., Kuu, A. Novel approaches to bioindication of heavy metals in soils contaminated by oil shale wastes. Oil Shale, 2009, 26(3), 424‒431.
https://doi.org/10.3176/oil.2009.3.07

15. Kuusik, R., Martins, A., Pihu, T., Pesur, A., Kaljuvee, T., Prikk, A., Trikkel, A., Arro, H. Fluidized-bed combustion of oil shale retorting solid waste. Oil Shale, 2004, 21(3), 237‒248.

16. Crawford, P., Biglarbigi, K., Dammer, A., Knaus, E. Advances in world oil-shale production technologies. In: SPE Annual Technical Conference and Exhibition (ATCE 2008), September 21–24, 2008 Denver, Colorado, USA, vol. 6, SPE 116570, 4101–4111.
https://doi.org/10.2118/116570-MS

17. Brandt, A. R. Converting oil shale to liquid fuels: energy inputs and greenhouse gas emissions of the Shell in situ conversion process. Environ. Sci. Technol., 2008, 42(19), 7489‒7495.
https://doi.org/10.1021/es800531f

18. Crawford, P., Killen, J. New challenges and directions in oil shale development technologies. In: Oil Shale: Solutions to the Liquid Fuel Dilemma (Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.). ACS Sym. Ser., 1032, 21‒60, Oxford University Press, 2010.
https://doi.org/10.1021/bk-2010-1032.ch002

19. Symington, W. A., Olgaard, D. L., Otten, G. A., Phillips, T. C., Thomas, M. M., Yeakel, J. D. ExxonMobil’s electrofrac process for in situ oil shale conversion. In: Oil Shale: Solutions to the Liquid Fuel Dilemma (Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.). ACS Sym. Ser., 1032, 185‒216, Oxford University Press, 2010.

20. Vinegar, H. Shell’s in-situ conversion process. In: Proceedings of the 26th Oil Shale Symposium, October 16‒18, 2006, Colorado School of Mines, Golden, Colorado, 2006.

21. Fowler, T. D., Vinegar, H. J. Oil shale ICP ‒ Colorado field pilots. In: SPE Western Regional Meeting, San Jose, CA, March 24–26, 2009. Society of Petroleum Engineers, 2009.
https://doi.org/10.2118/121164-MS

22. Ryan, R. C., Fowler, T. D., Beer, G. L., Nair, V. N. Shell’s in situ conversion process ‒ from laboratory to field pilots. In: Oil Shale: Solutions to the Liquid Fuel Dilemma (Ogunsola, O. I., Hartstein, A. M., Ogunsola, O., eds.). ACS Sym. Ser., 1032, 161‒183, Oxford University Press, 2010.

23. Tanaka, P. L., Yeakel, J. D., Symington, W. A., Spiecker, P. M., Del Pico, M., Thomas, M. M., Sullivan, K. B., Stone, M. T. Plan to test ExxonMobil’s in situ oil shale technology on a proposed RD&D lease. In: 31st Annual Oil Shale Symposium, Colorado School of Mines, October 17–19, 2011.

24. Zhao, Y., Feng, Z., Yang, D., Liu, S., Sun, K., Zhao, J., Guan, K., Duan, K. The Method for Extracting Oil & Gas from Oil Shale by Convection Heating. China Patent, CN200510012473, 4, 2010 (in Chinese).

25. Kang, Z. Q., Zhao, Y. S., Yang, D. Physical principle and numerical analysis of oil shale development using in-situ conversion process technology. Acta Petrolei Sinica, 2008, 29(4), 592–595 (in Chinese).

26.  Han, H., Zhong, N. N., Huang, C. X., Liu, Y., Luo, Q. Y., Dai, N., Huang, X. Y. Numerical simulation of in situ conversion of continental oil shale in Northeast China. Oil Shale, 2016, 33(1), 45‒57.
https://doi.org/10.3176/oil.2016.1.04

27. Geng, Y., Liang, W., Liu, J, Cao, M., Kang, Z. Evolution of pore and fracture structure of oil shale under high temperature and high pressure. Energ. Fuel., 2017, 31(10), 10404‒10413.
https://doi.org/10.1021/acs.energyfuels.7b01071

28. Wang, G., Yang, D., Zhao, Y., Kang, Z., Zhao, J., Huang, X. Experimental investigation on anisotropic permeability and its relationship with anisotropic thermal cracking of oil shale under high temperature and triaxial stress. Appl. Therm. Eng., 2019, 146, 718‒725.
https://doi.org/10.1016/j.applthermaleng.2018.10.005

29. Wang, L., Yang, D., Zhao, J., Zhao, Y., Kang, Z. Changes in oil shale characteristics during simulated in-situ pyrolysis in superheated steam. Oil Shale, 2018, 35(3), 230‒241.
https://doi.org/10.3176/oil.2018.3.03

30. Wang, L., Yang, D., Li, X., Zhao, J., Wang, G., Zhao, Y. Macro and meso characteristics of in-situ oil shale pyrolysis using superheated steam. Energies, 2018, 11(9), 2297.
https://doi.org/10.3390/en11092297

31. Kang, Z., Zhao, J., Yang, D., Zhao, Y., Hu, Y. Study of the evolution of micron-scale pore structure in oil shale at different temperatures. Oil Shale, 2017, 34(1), 42‒55.
https://doi.org/10.3176/oil.2017.1.03

32. Wang, L., Zhao, Y., Yang, D., Kang, Z., Zhao, J. Effect of pyrolysis on oil shale using superheated steam: A case study on the Fushun oil shale, China. Fuel, 2019, 253, 1490‒1498.
https://doi.org/10.1016/j.fuel.2019.05.134

33. Kang, Z., Zhao, Y., Yang, D., Tian, L., Li, X. A pilot investigation of pyrolysis from oil and gas extraction from oil shale by in-situ superheated steam injection. J. Petrol. Sci. Eng., 2020, 186, 106785.
https://doi.org/10.1016/j.petrol.2019.106785

34. Wang, Y., Zhao, Y., Feng, Z. Study of evolution characteristics of pore structure during flame coal pyrolysis. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(9), 1859‒1866 (in Chinese).

35. Kök, M. V., Guner, G., Bagci, S. Laboratory steam injection applications for oil shale fields of Turkey. Oil Shale, 2008, 25(1), 37–46.
https://doi.org/10.3176/oil.2008.1.05

36. GB/T 13610-2014. Analysis of Natural Gas Composition ‒ Gas Chromatography. Research Institute of Standards & Norms, Beijing, China, 2014 (in Chinese).

37. SY/T 5779-2008. Analytical Method of Hydrocarbons in Petroleum and Sediment by Gas Chromatography. National Development and Reform Commission, Beijing, China, 2008 (in Chinese).

38. El Harfi, K., Mokhlisse, A., Chanâa, M. B. Effect of water vapor on the pyrolysis of the Moroccan (Tarfaya) oil shale. J. Anal. Appl. Pyrol., 1999, 48(2), 65‒76.
https://doi.org/10.1016/S0165-2370(98)00108-9

39. Hao, Y., Yunxing, D. A feasibility study on in-situ heating of oil shale with injection fluid in China. J. Petrol. Sci. Eng., 2014, 122, 304‒317.
https://doi.org/10.1016/j.petrol.2014.07.025

40. Lee, K, J., Moridis, G. J., Ehlig-Economides, C. A. Oil shale in-situ upgrading by steam flowing in vertical hydraulic fractures. SPE Unconventional Resources Conference, 1‒3 April 2014, The Woodlands, Texas, USA. Society of Petroleum Engineers, 2014.
https://doi.org/10.2118/169017-MS

41. Kang, Z. Q. The Pyrolysis Characteristics and In-Situ Hot Drive Simulation Research That Exploit Oil-Gas of Oil Shale. PhD Thesis, Taiyuan University of Technology (in Chinese).

42. Qian, J. L., Yin, L., Wang, J. Q. Oil Shale-Complementary Energy of Petroleum. China Petrochemical Press, Beijing, 2008 (in Chinese).

 

Back to Issue