ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Influence of water-rock interaction on the pH and heavy metals content of groundwater during in-situ oil shale exploitation; pp. 104–118
PDF | https://doi.org/10.3176/oil.2020.2.02

Authors
Shu-ya Hu, Chang-Lai Xiao, Xiu-Juan Liang, Yu-qing Cao
Abstract

In this paper, step-by-step groundwater-rock interaction experiments were performed to investigate the migration of heavy metals (Pb, Cr, Zn) into the water and the pH change of oil shale and oil shale ash aqueous solutions (hereinafter OS solution and OSA solution, respectively) during the in-situ production of oil shale. For geochemical calculations the PHREEQC software was used to simulate pH variation in the aqueous solutions at different temperatures and CO2 partial pressures (PCO2). The pH of most solutions was between 6.95 and 7.49 and changed significantly with increasing reaction time. The simulated data were closest to the experimental results at PCO2 = 10–2. A clear effect of reaction temperature and pH on the Pb content in the aqueous solutions was observed. The Pb content in the OSA solution was 0.36–0.47 µg/L, being higher than that in the OS solution (0.13–0.26 µg/L). The Cr content in OS and OSA solutions was from 0.55 to 0.70 µg/L. The Zn content in the OS solution was 1.17–3.61 µg/L, being significantly influenced by reaction temperature.

References

1. Saif, T., Lin, Q., Bijeljic, B., Blunt, M. J. Microstructural imaging and characterization of oil shale before and after pyrolysis. Fuel, 2017, 197, 562‒574.
https://doi.org/10.1016/j.fuel.2017.02.030

2. Häsänen, E., Aunela-Tapola, L., Kinnunen, V., Latjava, K., Mehtonen, A., Salmikangas, T., Leskelä, J., Loosaar, J. Emission factors and annual emissions of bulk and trace elements from oil shale fueled power plants. Sci. Total Environ., 1997, 198(1), 1‒12.
https://doi.org/10.1016/S0048-9697(97)05432-6

3. Luan, J., Li, A., Su, T., Li, X. Translocation and toxicity assessment of heavy metals from circulated fluidized-bed combustion of oil shale in Huadian, China. J. Hazard. Mater., 2009, 166(2‒3), 1109‒1114.
https://doi.org/10.1016/j.jhazmat.2008.12.023

4. Blinova, I., Bityukova, L., Kasemets, K., Ivask, A., Käkinen, A., Kurvet, I., Bondarenko, O., Kanarbik, L., Sihtmäe, M., Aruoja, V., Schvede, H., Kahru, A. Environmental hazard of oil shale combustion fly ash. J. Hazard. Mater., 2012, 229‒230, 192‒200.
https://doi.org/10.1016/j.jhazmat.2012.05.095

5. Jefimova, J., Irha, N., Reinik, J., Kirso, U., Steinnes, E. Leaching of polycyclic aromatic hydrocarbons from oil shale processing waste deposit: A long-term field study. Sci. Total Environ., 2014, 481, 605‒610.
https://doi.org/10.1016/j.scitotenv.2014.02.105

6. Yan, J., Jiang, X., Han, X., Liu, J. A TG–FTIR investigation to the catal-ytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel, 2013, 104, 307–317.
https://doi.org/10.1016/j.fuel.2012.10.024

7. Pimentel, P. M., Oliveira, R. M. P. B., Melo, D. M. A., Anjos, M. J., Melo, M. A. F., González, G. Characterization of retorted shale for use in heavy metal removal. Appl. Clay Sci., 2010, 48(3), 375‒378.
https://doi.org/10.1016/j.clay.2010.01.009

8. Khan, N. A., Engle, M. A., Dungan, B., Omar Holguin, F., Xu, P., Carroll, K. C. Volatile-organic, molecular characterization of shale-oilproduced water from the Permian Basin. Chemosphere, 2016, 148, 126‒136.
https://doi.org/10.1016/j.chemosphere.2015.12.116

9. Maaten, B., Loo, L., Konist, A., Nešumajev, D., Pihu, T., Külaots, I. Decomposition kinetics of American, Chinese and Estonian oil shales kerogen. Oil Shale, 2016, 33(2), 167‒183.
https://doi.org/10.3176/oil.2016.2.05

10. Al-Otoom, A. Y., Shawabkeh, R. A., Al-Harahsheh, A. M., Shawaqfeh, A. T. The chemistry of minerals obtained from the combustion of Jordanian oil shale. Energy, 2005, 30(5), 611‒619.
https://doi.org/10.1016/j.energy.2004.05.024

11. Ge, Y. Z., Liu, W. F., Li, F., Gong, Y. L., Hu, L. A survey on speciation analysis of typical heavy metals in different spatial levels, Journal of Nanchang Institute of Technology, 2016, 35(6), 11‒15 (in Chinese).

12. Al-Harahsheh, S., Al-Ayed, O., Amer, M., Moutq, M. Analysis of retorted water produced from partial combustion of Sultani oil shale. J. Environ. Protect., 2017, 8(9), 1018‒1025.
https://doi.org/10.4236/jep.2017.89064

13. Farkas, A., Erratico, C., Viganò, L. Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere, 2007, 68(4), 761‒768.
https://doi.org/10.1016/j.chemosphere.2006.12.099

14. Bai, J. R., Wang, Q., Chen, Y., Xu, C. H., Chen, D. F. Study on heavy metals leaching toxicity of fly ash and bottom slag from oil shale CFB. Chinese Journal of Environmental Engineering, 2010, 4(8), 1892‒1896 (in Chinese).

15. Brandt, A. R. Converting oil shale to liquid fuels: Energy inputs and greenhouse gas emissions of the Shell in situ conversion process. Environ. Sci. Technol., 2008, 42(19), 7489‒7495.
https://doi.org/10.1021/es800531f

16. Liu, Z. J., Yang, H. L., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Meng, Q. T., Zhang, H. L., Gan, S. C. Oil Shale in China. Petroleum Industry Press, Beijing, 2009 (in Chinese).

17. Hu, S. Y., Xiao, C. L., Jiang, X., Liang, X. J. Potential impact of in-situ oil shale exploitation on aquifer system. Water, 2018, 10, 649.
https://doi.org/10.3390/w10050649

18. Parkhurst, D. L., Appelo, C. A. J. User’s Guide to PHREEQC (Version 2) – A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. U.S. Geological Survey, Water-Resources Investigations Report 99-4259, 1999. 10.3133/wri994259.

19. Tiruta-Barna, L. Using PHREEQC for modelling and simulation of dynamic leaching tests and scenarios. J. Hazard. Mater., 2008, 157(2‒3), 525‒533.
https://doi.org/10.1016/j.jhazmat.2008.01.028

20. Qiu, S. W. Experimental Study on the Impacts of Oil Shale in-situ Pyrolysis on Groundwater Hydrochemical Characteristics. Doctoral Dissertation, Jilin University, 2016 (in Chinese).

21. Bao, W. W., Zou, H. F, Gan, S. C., Xu, X. C., Ji, G. J., Zheng, K. Y. Adsorption of heavy metal ions from aqueous solutions by zeolite based on oil shale ash: Kinetic and equilibrium studies. Chem. Res. Chinese U., 2013, 29(1), 126‒131.
https://doi.org/10.1007/s40242-013-2139-2

22. Kovda, V. A. Biosphere, soil cover and their changes. In: Science Technology and the Future (Velikhov, E. P., Gvishiani, J. M., Mikulinsky, S. R., eds.), 1980, 397‒410.
https://doi.org/10.1016/B978-0-08-024743-4.50033-3

23. Migliavacca, D. M., Teixeira, E. C., Gervasoni, F., Conceição, R. V., Rodriguez, M. T. R. Metallic elements and isotope of Pb in wet precipitation in urban area, South America. Atmos. Res., 2012, 107, 106‒114.
https://doi.org/10.1016/j.atmosres.2012.01.001

24. Schincariol, R. A., Rowe, R. K. Contaminant hydrogeology. In: Geotechnical and Geoenvironmental Engineering Handbook (Rowe, R. K., ed.), Boston, MA, 2001.
https://doi.org/10.1007/978-1-4615-1729-0_24

25. Li, S. Y., Bai, J. R., Chen, Y., Wang, Q., Guan, X. H. Study on the volatility of lead during pyrolysis of oil shale. Journal of Fuel Chemistry and Technology. 2008, 36(4), 489‒493 (in Chinese).

26.Liao, Z. J. Pollution Hazards and Migration Transformation of Trace Heavy Metal Elements in the Environment. Science Press, Beijing, 1989 (in Chinese).

27. Shendrikar, A. D., Faudel, G. B. Distribution of trace metals during oil shale retorting. Environ. Sci. Technol., 1978, 12(3), 332‒334.
https://doi.org/10.1021/es60139a003

 

Back to Issue