ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
Analysis of the pore structure of Longkou oil shale semicoke during fluidized bed combustion; pp. 89–103
PDF | https://doi.org/10.3176/oil.2020.2.01

Authors
Hongpeng Liu, Shiyu Feng, Shiqiang Zhang, Haoran Xuan, Chunxia Jia, Qing Wang
Abstract

The combustion experiment of Longkou oil shale semicoke was conducted in a batch fluidized bed reactor. A specific surface area (SSA) analyzer and a scanning electron microscope (SEM) were used to respectively measure the specific surface area of samples and examine their surface pore structure in different experimental operating conditions, and the fractal dimension (FD) was used to describe the complexity of pore morphology. The results showed that Longkou oil shale semicoke had a developed pore structure, and in the combustion process, its SSA and pore volume first increased and then decreased, remaining finally unchanging. Most pores were micropores and mesopores of about 2 nm in size. The pore structure was fully developed at a temperature of 600 °C, at which the specific surface area and pore volume also reached maximum values. There were great differences in the pore size distribution of semicoke with different particle sizes. As calculated by the box-counting method (BCM) and the Frenkel-Halsey-Hill (FHH) equation, the pore size showed similar trends of variation, increasing first and then decreasing slowly.

References

1. Kok, M. V. Oil shale: pyrolysis, combustion, and environment: A review. Energ. Source., 2002, 24(2), 135–143.
https://doi.org/10.1080/00908310252774453

2. Wang, Q., Bai, J. R., Sun, B. Z., Sun, J. Strategy of Huadian oil shale comprehensive utilization. Oil Shale, 2005, 22(3), 305–316.

3. Pihu, T., Konist, A., Neshumayev, D., Loo, L., Molodtsov, A., Valtsev, A. Full-scale tests on the co-firing of peat and oil shale in an oil shale fired circulating fluidized bed boiler. Oil Shale, 2017, 34(3), 250–262.
https://doi.org/10.3176/oil.2017.3.04

4. Maaten, B., Järvik, O., Loo, L., Konist, A., Siirde, A. Characterization of the pyrolytic water from shale oil industry. Oil Shale, 2018, 35(4), 365–374.
https://doi.org/10.3176/oil.2018.4.06

5. Konist, A., Loo, L., Valtsev, A., Maaten, B., Siirde, A., Neshumayev, D., Pihu, T. Calculation of the amount of Estonian oil shale products from combustion in regular and oxy-fuel mode in a CFB boiler. Oil Shale, 2014, 31(3), 211–224.
https://doi.org/10.3176/oil.2014.3.02

6. Neshumayev, D., Pihu, T., Siirde, A., Järvik, O., Konist, A. Solid heat carrier oil shale retorting technology with integrated CFB technology. Oil Shale, 2019, 36(2S), 99–113.
https://doi.org/10.3176/oil.2019.2S.02

7. Han, X. X., Kulaots, I., Jiang, X. M., Suuberg, E. M. Review of oil shale semicoke and its combustion utilization. Fuel, 2014, 126, 143–161.
https://doi.org/10.1016/j.fuel.2014.02.045

8. Wang, Q., Zhao, W. Z., Liu, H. P, Jia, C. X., Li, S. H. Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion. Appl. Energ., 2011, 88(6), 2080–2087.
https://doi.org/10.1016/j.apenergy.2010.12.073

9. Trikkel, A., Kuusik, R., Martins, A., Pihu, T., Stencel, J. M. Utilization of Estonian oil shale semicoke. Fuel Process. Technol., 2008, 89(8), 756–763.
https://doi.org/10.1016/j.fuproc.2008.01.010

10. Kaljuvee, T., Kuusik, R., Trikkel, A., Radin, M. Behavior of sulphur compounds at combustion of oil shale semicoke. Oil Shale, 2003, 20(2), 113–125.

11. Zanoni, M. A. B., Massard, H., Martins, M. F. Formulating and optimizing a combustion pathway for oil shale and its semi-coke. Combust. Flame, 2012, 159(10), 3224–3234.
https://doi.org/10.1016/j.combustflame.2012.05.005

12. Liu, H. P., Liang, W. X., Wu, M. H., Wang, Q. Co-combustion of oil shale retorting solid waste with cornstalk particles in a circulating fluidized bed. Energ. Fuel., 2015, 29(10), 6832–6838.
https://doi.org/10.1021/acs.energyfuels.5b01804

13. Sun, B. Z., Wang, Q., Tan, P., Liu, H. P., Li, S. H., Guan, X. H. Thermal fragmentation characteristic of oil shale and semi-coke in fluidized bed combustion. Proceedings of the CSEE, 2010, 30(23), 62–66 (in Chinese).

14. Külaots, I., Goldfarb, J. L., Suuberg, E. M. Characterization of Chinese, Ameri-can and Estonian oil shale semicokes and their sorptive potential. Fuel, 2010, 89(11), 3300–3306.
https://doi.org/10.1016/j.fuel.2010.05.025

15. Huang, Y. Q., Zhang, M., Shan, L., Yang, H. R., Yue, G. X. Effects of retorting conditions on pore structure of oil shale semi coke. CIESC Journal, 2017, 68(10), 3870–3876 (in Chinese).

16. Zhao, L. M., Liang, J., Qian, L. X. Study on porous structure and fractal characteristics of oil shale and semicoke. Adv. Mater. Res., 2013, 868, 276–281.
https://doi.org/10.4028/www.scientific.net/AMR.868.276

17. Bai, J. R., Wang, Q., Jiao, G. J. Study on the pore structure of oil shale during low-temperature pyrolysis. Energy Procedia, 2012, 17(Part B), 1689–1696.
https://doi.org/10.1016/j.egypro.2012.02.299

18. Qin, H., Sun, B. Z., Wang, Q., Zhou, M. Z., Liu, H. P., Li, S. H. Analysis on influence factors of the characteristic of pore structure during combustion of oil shale semi-coke. Proceedings of the CSEE, 2008, 28(35), 14–20 (in Chinese).

19. Yang, Y. L., Zheng, K. Y., Li, Z. W., Si, L. L., Hou, S. S., Duan, Y. J. Experimental study on pore-fracture evolution law in the thermal damage process of coal. Int. J. Rock Mech. Min. Sci., 2019, 116, 13–24.
https://doi.org/10.1016/j.ijrmms.2019.03.004

20. Li, H., Shi, S. L., Lu, J. X., Ye, Q., Lu, Y., Zhu, X. N. Pore structure and multifractal analysis of coal subjected to microwave heating. Powder Technol., 2019, 346, 97–108.
https://doi.org/10.1016/j.powtec.2019.02.009

21. Sun, B.  Z., Zhou, M. Z., Liu, H. P., Wang, Q., Guan, X. H., Li, S. H. Study on surface characteristics of oil shale during fluidized combustion. Journal of Power Engineering, 2008, 28(2), 250–254 (in Chinese).

22. Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., Unger, K. K. Recommendations for the characterization of porous solids. Pure Appl. Chem., 1994, 66(8), 1739–1758.
https://doi.org/10.1351/pac199466081739

 

Back to Issue