The Permian Lucaogou Formation oil shale in the southeast of the Junggar Basin is the oldest oil shale in China. In this study, the biodegradation characteristics of the oil shale are investigated based on organic geochemistry. The analytical results show that the biodegraded oil shale contains large humps of unresolved complex mixtures (UCMs) and is depleted of n-alkanes and acyclic isoprenoids (pristine (Pr), phytane (Ph), iC18, iC17, iC16, iC15 and iC14). Furthermore, C14–C16 bicyclic terpanes are completely preserved. It can be concluded that the biodegradation level of the Lucaogou Formation oil shale is PM1–PM2. In addition, the values of aromatic hydrocarbon proxies (methyldibenzothiophene/dibenzothiophene (MDBT/DBT), dimethyldibenzothiophene/methyldibenzothiophene (DMDBT/MDBT), 1,2,7-trimethylnaphthalene/1,3,6-trimethylnaphthalene (1,2,7-TMN/1,3,6-TMN) and 1,2,4-trimethylnaphthalene/1,6,7-trimethylnaphthalene (1,2,4-TMN/1,6,7-TMN)) also reflect a low bio-degradation level. The well-preserved TMN derivatives indicate that the biodegradation level of the Lucaogou Formation oil shale is below PM3.
1. Head, I. M., Jones, D. M., Larter, S. R. Biological activity in the deep subsurface and the origin of heavy oil. Nature, 2003, 426, 344–352.
https://doi.org/10.1038/nature02134
2. Wenger, L. M., Isaksen, G. H. Control of hydrocarbon seepage intensity on level of biodegradation in sea bottom sediments. Org. Geochem., 2002, 33(12), 1277–1292.
https://doi.org/10.1016/S0146-6380(02)00116-X
3. Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide, Volume 2. Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, New York, 2005.
4. Bailey, N. J. L., Jobson, A. M., Rogers, M. A. Bacterial degradation of crude oil: comparison of field and experimental data. Chem. Geol., 1973, 11(3), 203–221.
https://doi.org/10.1016/0009-2541(73)90017-X
5. Sun, Y. H., Bai, F. T., Lu, X. S., Li, Q., Liu, Y. M., Guo, M. Y., Guo, W., Liu, B. C. A novel energy-efficient pyrolysis process: self-pyrolysis of oil shale triggered by topochemical heat in a horizontal fixed bed. Sci. Rep., 2015, 5, Article number 8290, 1–8.
https://doi.org/10.1038/srep08290
6. Tassi, F., Venturi, S., Cabassi, J., Vaselli, O., Gelli, I., Cinti, D., Capecchiacci, F. Biodegradation of CO2, CH4 and volatile organic compounds (VOCs) in soil gas from the Vicano–Cimino hydrothermal system (central Italy). Org. Geochem., 2015, 86, 81–93.
https://doi.org/10.1016/j.orggeochem.2015.06.004
7. Zhang, M. M., Liu, Z. J., Xu, S. C., Sun, P. C., Hu, X. F. Element response to the ancient lake information and its evolution history of argillaceous source rocks in the Lucaogou Formation in Sangonghe area of southern margin of Junggar Basin. J. Earth Sci., 2013, 24(6), 987–996.
https://doi.org/10.1007/s12583-013-0392-4
8. Zhang, M. M., Liu, Z. J., Xu, S. Z., Hu, X. F., Sun, P. C., Wang, Y. L. Analysis for the Paleosalinity and lake-level changes of the oil shale measures in the Lucaogou Formation in the Sangonghe Area of Southern Margin, Junggar Basin. Petrol. Sci. Technol., 2014, 32(16), 1973–1980.
https://doi.org/10.1080/10916466.2012.742541
9. Zhang, M. M., Liu, Z. J., Qiu, H. J., Xu, Y. B. Characteristics of organic matter of oil shale in sequence stratigraphic framework at the northern foot of Bogda Mountain, China. Oil Shale, 2016, 33(1), 31–44.
https://doi.org/10.3176/oil.2016.1.03
10. Jiao, Y., Wu, L., He, M., Roger, M., Wang, M., Xu, Z. Occurrence, thermal evolution and primary migration processes derived from studies of organic matter in the Lucaogou source rock at the southern margin of the Junggar Basin, NW China. Sci. China, Ser. D: Earth Sci., 2007, 50(Suppl. 2), 114–123.
https://doi.org/10.1007/s11430-007-6027-9
11. Xie, X., Borjigin, T., Zhang, Q., Zhang, Z., Qin J., Bian, L., Volkman, J. K. Intact microbial fossils in the Permian Lucaogou Formation oil shale, Junggar -Basin, NW China. Int. J. Coal Geol., 2015, 146, 166–178.
https://doi.org/10.1016/j.coal.2015.05.011
12. Gao, Z. L., Kang, Y. S., Liu, R. H., Bai, W. H. Geological features and developmental controlling factors of Lucaogou oil shale in the southern margin of Junggar basin. Xinjiang Geol., 2011, 29, 189–193 (in Chinese with English -abstract).
13. Pawlowska, M. M., Butterfield, N. J., Brocks, J. J. Lipid taphonomy in the Proterozoic and the effect of microbial mats on biomarker preservation. -Geology., 2013, 41(2), 103–106.
https://doi.org/10.1130/G33525.1
14. Cheng, B., Wang, T. G., Chen, Z., Chang, X., Yang, F. Biodegradation and possible source of Silurian and Carboniferous reservoir bitumens from the Halahatang sub-depression, Tarim Basin, NW China. Mar. Petrol. Geol., 2016, 78, 236–246.
https://doi.org/10.1016/j.marpetgeo.2016.09.023
15. Ahmed, M., Smith, J. W., George, S. C. Effects of biodegradation on Australian Permian coals. Org. Geochem., 1999, 30(10), 1311–1322.
https://doi.org/10.1016/S0146-6380(99)00104-7
16. Bennett, B., Fustic, M., Farrimond, P., Huang, H., Larter, S. R. 25-Norhopanes: Formation during biodegradation of petroleum in the subsurface. Org. Geochem., 2006, 37(7), 787–797.
https://doi.org/10.1016/j.orggeochem.2006.03.003
17. Rullkötter, J., Leythaeuser, D., Horsfield, B., Littke, R., Mann, U., Müller, P. J., Radke, M., Schaefer, R. G., Schenk, J.-H., Schwochau, K., Witte, E. G., Welte, D. H. Organic matter maturation under the influence of a deep intrusive heat source: a natural experiment for quantitation of hydrocarbon generation and expulsion from a petroleum source rock (Toarcian shale, northern Germany). Org. Geochem., 1988, 13(4–6), 847–856.
https://doi.org/10.1016/0146-6380(88)90237-9
18. Song, J., Littke, R., Weniger, P., Ostertag-Henning, C., Nelskamp, S. Shale oil potential and thermal maturity of the Lower Toarcian Posidonia shale in NW Europe. Int. J. Coal Geol., 2015, 150–151, 127–153.
https://doi.org/10.1016/j.coal.2015.08.011
19 Zhang, S. C., Huang, H. P., Su, J., Zhu, G. Y., Wang, X. M., Larter, S. Geochemistry of Palaeozoic marine oils from the Tarim Basin, NW China: Part 4. Paleobiodegradation and oil charge mixing. Org. Geochem., 2014, 67, 41–57.
https://doi.org/10.1016/j.orggeochem.2013.12.008
20. Luo, Q., George, S. C., Xu, Y., Zhong, N. Organic geochemical characteristics of the Mesoproterozoic Hongshuizhuang Formation from northern China: implications for thermal maturity and biological sources. Org. Geochem., 2016, 99, 23–37.
https://doi.org/10.1016/j.orggeochem.2016.05.004
21. Peters, K. E., Moldowan, J. M. Effects of source, thermal maturity, and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org. Geochem., 1991, 17(1), 47–61.
https://doi.org/10.1016/0146-6380(91)90039-M
22. Larter, S. R., Huang, H., Adams, J., Bennett, B., Snowdon, L. R. A practical biodegradation scale for use in reservoir geochemical studies of biodegraded oils. Org. Geochem., 2012, 45, 66–76.
https://doi.org/10.1016/j.orggeochem.2012.01.007
23. Booth, A. M., Aitken, C., Jones, D. M., Lewis, C. A., Rowland, S. J. Resistance of toxic alkylcyclohexyltetralins to biodegradation by aerobic bacteria. Org. Geochem., 2007, 38(4), 540–550.
https://doi.org/10.1016/j.orggeochem.2006.12.008
24. Formolo, M., Martini, A., Petsch, S. Biodegradation of sedimentary organic matter associated with coalbed methane in the Powder River and San Juan Basins, U.S.A. Int. J. Coal Geol., 2008, 76(1–2), 86–97.
https://doi.org/10.1016/j.coal.2008.03.005
25. Gao, L., Brassell, S. C., Mastalerz, M., Schimmelmann, A. Microbial degradation of sedimentary organic matter associated with shale gas and coalbed methane in eastern Illinois Basin (Indiana), USA. Int. J. Coal Geol., 2013, 107, 152–164.
https://doi.org/10.1016/j.coal.2012.09.002
26. Bennett, B., Larter, S. R. Biodegradation scales: applications and limitations. Org. Geochem., 2008, 39(8), 1222–1228.
https://doi.org/10.1016/j.orggeochem.2008.02.023