ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
COMPARATIVE CHARACTERIZATION OF ORGANIC MATTER OF OIL SHALES FROM THE MAIN DEPOSITS IN BULGARIA; pp. 305–317
PDF | https://doi.org/10.3176/oil.2019.2.04

Authors
MARIA RAZVIGOROVA, TEMENUZHKA BUDINOVA, BOYKO TSYNTSARSKI, BILYANA PETROVA, NARTZISLAV PETROV, IVANKA STOYCHEVA
Abstract

The organic matter of oil shale samples from four major Bulgarian deposits was investigated using thermal and oxidative treatments. Neutral oils from oil shales were obtained by low-temperature pyrolysis. Gas chromatography-mass spectrometry (GC-MS) was used to study the oxida­tion products and their chemical composition. A stepwise alkaline permanganate degradation of oil shale concentrate at ambient temperature was carried out, affording a high total yield (90 %) of oxidation products and a minimum yield of gas products. Two different types of high molecular substances were detected in oil shales. The results allowed conclusions to be made about the utilization of prospective Bulgarian oil shale deposits as energy sources.

References

1.      Raukas, A. Oil shale industry and sustainability – governance through dialogue. Oil Shale, 2005, 22(1), 3–4.

2.      Oja, V. A brief overview of motor fuels from shale oil of kukersite. Oil Shale, 2006, 23(2), 160–163.

3.      Kann, J., Raukas, A., Siirde, A. About the gasification of kukersite oil shale. Oil Shale, 2013, 30(2S), 283–293.
https://doi.org/10.3176/oil.2013.2S.08

4.      Lazarov, I., Dimitrova, Tz., Georgiev, N., Vilkov, V., Shipkov, P. Thermal treatment of oil shale. In: Bulgarian Oil Shale. Bulgarian Academy of Sciences, 1983, 127–131 (in Russian).

5.      Panov, G. Review of the deposits of oil shale in Bulgaria In: Bulgarian Oil Shale. Bulgarian Academy of Sciences, 1983, 7–21 (in Russian).

6.      Razvigorova, M., Angelova, G. Comparative characteristics of neutral oils of low-temperature carbonization of some Bulgarian oil shale deposits. Petrol. Coal Geol., 1979, 10, 25–31 (in Bulgarian).

7.      Minkova, V., Razvigorova, M., Goranova, M., Ljutzkanov, L., Angelova, G. Effect of water vapour on the pyrolysis of solid fuels: 1. Effect of water vapour during the pyrolysis of solid fuels on the yield and composition of the liquid products. Fuel, 1991, 70(6), 713–719.
https://doi.org/10.1016/0016-2361(91)90067-K

8.      Minkova, V., Razvigorova, M., Gergova, K., Goranova, K., Ljutzkanov,L., Angelova, G. Effect of water vapour on the pyrolysis of solid fuels: 2. Effect of water vapour during the pyrolysis of solid fuels on the formation of the porous structure of semicoke. Fuel, 1992, 71(3), 263–265.
https://doi.org/10.1016/0016-2361(92)90071-U

9.      Sawatsky, H., George, A. E., Smiley, G. T., Montgomery, D. S. Hydrocarbon-type separation of heavy petroleum fractions. Fuel, 1976, 55(1) 16–20.
https://doi.org/10.1016/0016-2361(76)90064-8

10. Bajc, S., Ambles, A., Vitorovic, D. E. Preserved precursors in Pumpherston shale kerogen revealed by oxidative degradation. J. Serb. Chem. Soc., 2004, 69(11), 923–940.
https://doi.org/10.2298/JSC0411923B

11. Bajc, S., Ambles, A., Largeau, C., Derenne, S., Vitorovic, D. Precursor bio­structures in kerogen matrix revealed by oxidative degradation: oxidation of kerogen from Estonian kukersite. Org. Geochem., 2001, 32(6), 773–784.
https://doi.org/10.1016/S0146-6380(01)00042-0

12. Blokker, P., van Bergen, P., Pancost, R., Collinson, M. E., de Leeuw, J. W., Sinninghe Damste, J. S. The chemical structure of Gloeocapsomorpha prisca microfossils: implications for their origin. Geochim. Cosmochim. Ac., 2001, 65(6), 885–900.
https://doi.org/10.1016/S0016-7037(00)00582-2

13. Yoshioka, H., Ishiwatari, R. An improved ruthenium tetroxide oxidation of marine and lacustrine kerogens: possible origin of low molecular weight acids and benzenecarboxylic acids. Org. Geochem., 2005, 36(1), 83–94.
https://doi.org/10.1016/j.orggeochem.2004.07.002

14. Vitorovic, D., Ambles, A., Djordjevic, M. Relationship between kerogens of various structural types and the products of their multistep oxidative degradation. Org. Geochem., 1984, 6, 333–342.
https://doi.org/10.1016/0146-6380(84)90055-X

15. Angelova, G., Budinova, T., Razvigorova, M. Exhausting oxidative destruction of oil shale by potassium permanganate in alkaline medium. Khimiya Tverdogo Topliva, 1981, 3, 106–113 (in Russian).

16. Borrego, A. G., Blanco, C. G., Prado, J. G., Diaz, C., Guillen, M. D. 1H NMR and FTIR spectroscopic studies of bitumen and shale oil from selected Spanish oil shales Energ. Fuel., 1996, 10(1), 77–84.
https://doi.org/10.1021/ef950111x

17. Petersen, H., Rosenberg, P., Nytoft, H. P. Oxygen groups in coals and alginite-rich kerogen revisited. Int. J. Coal Geol., 2008, 74(2), 93–113.
https://doi.org/10.1016/j.coal.2007.11.007

18. Vandenbroucke, M., Largeau, C. Kerogen origin, evolution and structure. Org. Geochem., 2007, 38(5), 719–833.
https://doi.org/10.1016/j.orggeochem.2007.01.001

19. Vitorovic, D., Dragojlovic, V. Test of the validity of some kerogen models based on oxidative degradation. Org. Geochem., 1990, 15(3), 313–319.
https://doi.org/10.1016/0146-6380(90)90009-O

20. Karabakan, A.,Yürüm, Y. Effect of the mineral matrix in the reactions of shales. Part 2. Oxidation reactions of Turkish Göynük and US Western Reference oil shales, Fuel, 2000,79(7), 785–792.
https://doi.org/10.1016/S0016-2361(99)00200-8

Back to Issue