ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
AN INVESTIGATION INTO THE CHARACTERISTICS AND KINETICS OF OIL SHALE OXY-FUEL COMBUSTION BY THERMOGRAVIMETRIC ANALYSIS; pp. 1–18
PDF | https://doi.org/10.3176/oil.2019.1.01

Authors
FENGTIAN BAI, JINMIN ZHAO, YUMIN LIU
Abstract

The characteristics of Huadian oil shale combustion in O2/CO2 atmospheres were compared to those in O2/N2 atmospheres by using non-isothermal methods. The combustion kinetics parameters were calculated using the Kissinger-Akahira-Sunose (KAS) and Friedman methods. Specifically, the effect of oxygen concentration (10, 20, 30, 50, 65 and 80% O2) and heating rate (2, 5, 10 and 20 °C min−1) on the combustion reactivity and kinetics of Huadian oil shale in CO2-based and N2-based atmospheres were investigated to identify the optimal gases mixture and oxygen concentration. Comparison of the combustion performances of oil shale in CO2/O2 and N2/O2 environments indicated that the organic matter combusted earlier in CO2-based atmospheres than in N2-based atmospheres when the oxygen concentration was 10% and 20%. Meanwhile, the average activation energies of organic matter combustion in CO2-based atmospheres was higher than those in N2-based atmospheres at an oxygen concentration of 10% and 20%. With an appropriate amount of O2 and CO2, the combustion performance of oil shale in 30% O2/70% CO2 was superior to that in 30% O2/70% N2, and the combustion activation energy in the 30% O2/70% CO2 atmosphere was also lower. The similar combustion processes and activation energies of oxy-fuel and conventional combustion with oxygen concentrations above 50% indicate that oxygen plays a leading role in organic matter combustion under high oxic conditions. The results reveal that the 30% O2/70% CO2 atmosphere is optimal for oil shale combustion.

References

1.       Özgür, E., Miller, S. F., Miller, B. G.., Kök, M. V. Thermal analysis of co-firing of oil shale and biomass fuels. Oil Shale, 2012, 29(2), 190–201.
https://doi.org/10.3176/oil.2012.2.07

2.       Toftegaard, M. B., Brix, J., Jensen, P. A., Glarborg, P., Jensen, A. D. Oxy-fuel com­bustion of solid fuels. Prog. Energ. Combust., 2010, 36(5), 581–625.
https://doi.org/10.1016/j.pecs.2010.02.001

3.       Wang, C. A., Zhang, X. M., Liu, Y. H., Che, D. F. Pyrolysis and combustion characteristics of coals in oxyfuel combustion. Appl. Energ., 2012, 97, 264–273.
https://doi.org/10.1016/j.apenergy.2012.02.011

4.       Yuzbasi, N. S., Selçuk, N. Air and oxy-fuel combustion characteristics of biomass/lignite blends in TGA-FTIR. Fuel Process. Technol., 2011, 92(5), 1101–1108.
https://doi.org/10.1016/j.fuproc.2011.01.005

5.       Chen, C. X., Lu, Z. G., Ma, X. Q., Long, J., Peng, Y. N., Hu, L. K., Lu, Q. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis. Bioresource Technol., 2013, 144, 563–571.
https://doi.org/10.1016/j.biortech.2013.07.011

6.       López, R., Fernández, C., Fierro, J., Cara, J., Martínez, O., Sánchez, M. E. Oxy-combustion of corn, sunflower, rape and microalgae bioresidues and their blends from the perspective of thermogravimetric analysis. Energy, 2014, 74, 845–854.
https://doi.org/10.1016/j.energy.2014.07.058

7.       Meng, F., Yu, J., Tahmasebi, A., Han, Y. Pyrolysis and combustion behavior of coal gangue in O2/CO2 and O2/N2 mixtures using thermogravimetric analysis and a drop tube furnace. Energ. Fuel., 2013, 27(6), 2923–2932.
https://doi.org/10.1021/ef400411w

8.       Jaber, J. O., Probert, S. D. Pyrolysis and gasification kinetics of Jordanian oil-shales. Appl. Energ., 1999, 63(4), 269–286.
https://doi.org/10.1016/S0306-2619(99)00033-1

9.       Meriste, T., Yörük, C. R., Trikkel, A., Kaljuvee, T., Kuusik, R. TG-FTIR analysis of oxidation kinetics of some solid fuels under oxy-fuel conditions. J. Therm. Anal. Calorim., 2013, 114(2), 483–489.
https://doi.org/10.1007/s10973-013-3063-x

10.    Yörük, C. R., Meriste, T., Trikkel, A., Kuusik, R. Thermo-oxidation char­acteristics of oil shale and oil shale char under oxy-fuel combustion conditions. J. Therm. Anal. Calorim., 2015, 121(1), 509–516.
https://doi.org/10.1007/s10973-015-4484-5

11.    Loo, L., Maaten, B., Siirde, A., Pihu, T., Konist, A. Experimental analysis of the combustion characteristics of Estonian oil shale in air and oxy-fuel atmospheres. Fuel Process. Technol., 2015, 134, 317–324.
https://doi.org/10.1016/j.fuproc.2014.12.051

12.    Bai, F. T., Sun, Y. H., Liu, Y. M. Thermogravimetric analysis of Huadian oil shale combustion at different oxygen concentrations. Energ. Fuel., 2016, 30(6), 4450–4456.
https://doi.org/10.1021/acs.energyfuels.5b02888

13.    Xie, F. F., Wang, Z., Lin, W. G., Song, W. L. Study on thermal conversion of Huadian oil shale under N2 and CO2 atmospheres. Oil Shale, 2010, 27(4), 309–320.
https://doi.org/10.3176/oil.2010.4.04

14.    Ollero, P., Serrera, A., Arjona, R., Alcantarilla, S. Diffusional effects in TGA gasification experiments for kinetic determination. Fuel, 2002, 81(15), 1989–2000.
https://doi.org/10.1016/S0016-2361(02)00126-6

15.    Wang, Q., Jia, C., Jiang, Q., Wang, Y., Wu, D. Combustion characteristics of Indonesian oil sands. Fuel Process. Technol., 2012, 99, 110–114.
https://doi.org/10.1016/j.fuproc.2012.02.006

16.    Akahira, T., Sunose, T. Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba Inst. Technol. (Sci. Technol.), 1971, 16, 22–31.

17.    Friedman, H. L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polymer Sci. Pol. Sym., 1964, 6(1), 183–195.
https://doi.org/10.1002/polc.5070060121

18.    Bai, F. T., Sun, Y. H., Liu, Y. M., Li, Q., Guo, M. Y. Thermal and kinetic characteristics of pyrolysis and combustion of three oil shales. Energ. Convers. Manage., 2015, 97, 374–381.
https://doi.org/10.1016/j.enconman.2015.03.007

19.    Vyazovkin, S., Burnham, A. K., Criado, J. M., Pérez-Maqueda, L. A., Popescu, C., Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta, 2011, 520(1–2), 1–19.
https://doi.org/10.1016/j.tca.2011.03.034

20.    Bai, F. T., Guo, W., Lü, X. S., Liu, Y. M., Guo, M. Y., Li, Q., Sun, Y. H. Kinetic study on the pyrolysis behavior of Huadian oil shale via non-isothermal thermogravimetric data. Fuel, 2015, 146, 111–118.
https://doi.org/10.1016/j.fuel.2014.12.073

21.    Sun, Y. H., Bai, F. T., Lü, X. S., Jia, C. X., Wang, Q., Guo, M. Y., Li, Q., Guo, W. Kinetic study of Huadian oil shale combustion using a multi-stage parallel reaction model. Energy, 2015, 82, 705–713.
https://doi.org/10.1016/j.energy.2015.01.080

22.    Chen, C. X., Ma, X. Q., Liu, K. Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations. Appl. Energ., 2011, 88(9), 3189–3196.
https://doi.org/10.1016/j.apenergy.2011.03.003

23.    Fang, M. X., Shen, D. K, Li, Y. X., Yu, C. J., Luo, Z. Y., Cen, K. F. Kinetic study on pyrolysis and combustion of wood under different oxygen con­centra­tions by using TG-FTIR analysis. J. Anal. Appl. Pyrol., 2006, 77(1), 22–27.
https://doi.org/10.1016/j.jaap.2005.12.010

24.    Li, S., Cheng, Y. Catalytic gasification of gas-coal char in CO2. Fuel, 1995, 74(3), 456–458.
https://doi.org/10.1016/0016-2361(95)93482-S

25.    Burnham, A. K. Reaction kinetics between CO2 and oil-shale residual carbon. 2. Partial-pressure and catalytic-mineral effects. Fuel, 1979, 58(10), 713–718.
https://doi.org/10.1016/0016-2361(79)90068-1
https://doi.org/10.1016/0016-2361(79)90067-X

26.    Su, D. S., Müller, J.-O., Jentoft, R. E., Rothe, D., Jacob, E., Schlögl, R. Fullerene-like soot from EuroIV diesel engine: consequences for catalytic automotive pollution control. Top. Catal., 2004, 30(1–4), 241–245.
https://doi.org/10.1023/B:TOCA.0000029756.50941.02

27.    Al-Makhadmeh, L., Maier, J., Al-Harahsheh, M., Scheffknecht, G. Oxy-fuel technology: An experimental investigation into oil shale combustion under oxy-fuel conditions. Fuel, 2013, 103, 421–429.
https://doi.org/10.1016/j.fuel.2012.05.054

28.    Al-Makhadmeh, L. A., Maier, J., Batiha, M. A., Scheffknecht, G. Oxyfuel technol­ogy: Oil shale desulfurization behavior during staged combustion. Fuel, 2017, 190, 229–236.
https://doi.org/10.1016/j.fuel.2016.11.022

Back to Issue