Thermal bitumen is an important intermediate derived from kerogen decomposition during oil shale pyrolysis. In this study, thermal bitumen was obtained by extracting oil shale char generated from pyrolysis of Huadian oil shale at 360‒530 °C. The chemical composition and pyrolysis characteristics of bitumen were investigated by ultimate analysis, liquid chromatography fractionation, Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The decomposition of oxygen-containing structures at 420‒450 °C decreased the oxygen content from 4.66 to 0.75 wt%. The intense cracking of aliphatic compounds or alkyl chains at 450‒480 °C resulted in the selective concentration of aromatic compounds and the decrease of H/C ratio from 1.350 to 1.262. The pyrolysis of thermal bitumen could be tentatively divided into two stages – the evaporation of light components (150‒410 °C) and the cracking of heavy components (410‒550 °C), which corresponded respectively to a shoulder and an obvious peak in differential thermal gravimetry (DTG) curves. For pyrolysis of oil shale, the evaporation process dominated the pyrolysis of thermal bitumen at 420‒450 °C, which decreased the content of light components. In a higher temperature range, 450‒480 °C, the cracking of large molecules became more intense and, as a result, increased the content of light components and decreased that of heavy components.
1. Siirde, A. Oil shale − global solution or part of the problem? Oil Shale, 2008, 25(2), 201−202.
https://doi.org/10.3176/oil.2008.2.01
2. Sepp, M., Pae, T., Tammiksaar, E. Oil shale in Estonia in the 19th century – from rediscovery to usage. Oil Shale, 2018, 35(1), 84−95.
https://doi.org/10.3176/oil.2018.1.06
3. Liu, Z. J., Meng, Q. T., Dong, Q. S., Zhu, J. W., Guo, W., Ye, S. Q., Liu, R., Jia, J. L. Characteristics and resource potential of oil shale in China. Oil Shale, 2017, 34(1), 15−41.
https://doi.org/10.3176/oil.2017.1.02
4. Zhao, X. S., Liu, Z. Y., Liu, Q. Y. The bond cleavage and radical coupling during pyrolysis of Huadian oil shale. Fuel, 2017, 199, 169‒175.
https://doi.org/10.1016/j.fuel.2017.02.095
5. Li, Q. Y., Han, X. X., Liu, Q. Q., Jiang, X. M. Thermal decomposition of Huadian oil shale. Part 1. Critical organic intermediates. Fuel, 2014, 121, 109‒116.
https://doi.org/10.1016/j.fuel.2013.12.046
6. Wang, W., Ma, Y., Li, S. Y., Shi, J., Teng, J. S. Effect of temperature on the EPR properties of oil shale pyrolysates. Energ. Fuel., 2016, 30(2), 830‒834.
https://doi.org/10.1021/acs.energyfuels.5b02211
7. Braun, R. L., Rothman, A. J. Oil shale pyrolysis: kinetics and mechanism of oil production. Fuel, 1975, 54(2): 129‒131.
https://doi.org/10.1016/0016-2361(75)90069-1
8. Ziegel, E. R., Gorman, J. W. Kinetic modelling with multiresponse data. Technometrics, 1980, 22(2), 139‒151.
9. Wen, C. S., Kobylinski, T. P. Low-temperature oil shale conversion. Fuel, 1983, 62(11), 1269‒1273.
https://doi.org/10.1016/S0016-2361(83)80008-8
10. Miknis, F. P., Turner, T. F., Berdan, G. L., Conn, P. J. Formation of soluble products from thermal decomposition of Colorado and Kentucky oil shales. Energ. Fuel., 1987, 1(6), 477‒483.
https://doi.org/10.1021/ef00006a004
11. Wang, Q., Sun, B. Z., Hu, A. J., Bai, J. R., Li, S. H. Pyrolysis characteristics of Huadian oil shales. Oil Shale, 2007, 24(2), 147−157.
12. Jaber, J. O., Probert, S. D. Non-isothermal thermogravimetry and decomposition kinetics of two Jordanian oil shales under different processing conditions. Fuel Process. Technol., 2000, 63(1), 57−70.
https://doi.org/10.1016/S0378-3820(99)00064-8
13. Chang, Z. B., Chu, M., Zhang, C., Bai, S. X., Lin, H., Ma, L. B. Investigation of the effect of selected transition metal salts on the pyrolysis of Huadian oil shale, China. Oil Shale, 2017, 34(4), 354−367.
https://doi.org/10.3176/oil.2017.4.04
14. Yan, J. W., Jiang, X. M., Han, X. X., Liu, J. G. A TG-FTIR investigation to the catalytic effect of mineral matrix in oil shale on the pyrolysis and combustion of kerogen. Fuel, 2013, 104, 307‒317.
https://doi.org/10.1016/j.fuel.2012.10.024
15. Chi, M. S., Xu, X. C., Cui, D., Zhang, H. X., Wang, Q. A TG-FTIR investigation and kinetic analysis of oil shale kerogen pyrolysis using the distributed activation energy model. Oil Shale, 2016, 33(3), 228−247.
https://doi.org/10.3176/oil.2016.3.03
16. Al-Ayed, O. S., Amer, M. W., Matouq, M. Variable activation energy principle to model oil shale pyrolysis kinetics. Oil Shale, 2017, 34(2), 181−194.
https://doi.org/10.3176/oil.2017.2.07
17. Wang, S., Jiang, X. M., Han, X. X., Tong, J. H. Effect of retorting temperature on product yield and characteristics of non-condensable gases and shale oil obtained by retorting Huadian oil shales. Fuel Process. Technol., 2014, 121, 9−15.
https://doi.org/10.1016/j.fuproc.2014.01.005
18. Chang, Z. B., Chu, M., Zhang, C., Bai, S. X., Lin, H., Ma, L. B. Influence of inherent mineral matrix on the product yield and characterization from Huadian oil shale pyrolysis. J. Anal. Appl. Pyrol., 2018, 130, 269−276.
https://doi.org/10.1016/j.jaap.2017.12.022
19. Espitalié, J., Senga Makadi, K., Trichet, J. Role of the mineral matrix during kerogen pyrolysis. Org. Geochem., 1984, 6, 365−382.
https://doi.org/10.1016/0146-6380(84)90059-7
20. Tannenbaum, E., Kaplan, I. R. Role of minerals in the thermal alteration of organic matter − I: Generation of gases and condensates under dry condition. Geochim. Cosmochim. Ac., 1985, 49(12), 2589−2604.
https://doi.org/10.1016/0016-7037(85)90128-0
21. Shi, J., Ma, Y., Li, S. Y., Wu, J. X., Zhu, Y. K., Teng. J. S. Characteristics of Estonian oil shale kerogen and its pyrolysates with thermal bitumen as a pyrolytic intermediate. Energ. Fuel., 2017, 31(5), 4808‒4816.
https://doi.org/10.1021/acs.energyfuels.7b00054
22. Shi, J., Ma, Y., Li, S. Y., Zhang, L. Characteristics of thermal bitumen structure as the pyrolysis intermediate of Longkou oil shale. Energ. Fuel., 2017, 31(10), 10535‒10544.
https://doi.org/10.1021/acs.energyfuels.7b01542
23. Ru, X., Cheng, Z. Q., Song, L. H., Wang, H. Y., Li, J. F. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen. J. Mol. Struct., 2012, 1030, 10‒18.
https://doi.org/10.1016/j.molstruc.2012.07.027
24. Liu, X. P., Zhan, J. H., Lai, D. G., Liu, X. X., Zhang, Z. J., Xu, G. W. Initial pyrolysis mechanism of oil shale kerogen with reactive molecular dynamics simulation. Energ. Fuel., 2015, 29(5), 2987‒2997.
https://doi.org/10.1021/acs.energyfuels.5b00084
25. Chen, B., Han, X. X., Li, Q. Y., Jiang, X. M. Study of the thermal conversions of organic carbon of Huadian oil shale during pyrolysis. Energ. Convers. Manage., 2016, 127, 284−292.
https://doi.org/10.1016/j.enconman.2016.09.019
26. Tiwari, P., Deo, M. Compositional and kinetic analysis of oil shale pyrolysis using TGA-MS. Fuel, 2012, 94, 333‒341.
https://doi.org/10.1016/j.fuel.2011.09.018
27. Tong, J. H., Han, X. X., Wang, S., Jiang, X. M. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD). Energ. Fuel., 2011, 25(9), 4006‒4013.
https://doi.org/10.1021/ef200738p
28. Wang, Q., Ye, J. B., Yang, H. Y., Liu, Q. Chemical composition and structural characteristics of oil shales and their kerogens using Fourier Transform Infrared (FTIR) spectroscopy and solid-state 13C Nuclear Magnetic Resonance (NMR). Energ. Fuel., 2016, 30(8), 6271‒6280.
https://doi.org/10.1021/acs.energyfuels.6b00770