Oil shale ash (OSA) from the circulating fluidized bed (CFB) boiler was granulated and used as a sorbent for the removal of phenols from shale oil wastewater. The method for preparation of the sorbent involved washing of the ash, mixing with clay, gelling the mixture with sodium alginate solution, solidifying the granules in barium chloride solution, drying and calcination of the granules and modifying with a surfactant – hexadecyltrimethylammonium bromide (CTAB). The sorbent was characterized by specific surface area (BETN2), X-ray diffraction (XRD) and 29Si Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR) analysis. Batch adsorption experiments were conducted to determine the phenol adsorption isotherm at 20 °C and removal of water-soluble phenols from phenolic shale oil processing wastewater. Removal of phenols from wastewater was found to be 50–65% under given conditions.
1. Dyni, J. R. Geology and Resources of Some World Oil-Shale Deposits. U.S. Geological Survey Scientific Investigations Report 2005-5294, Reston, Virginia, 2006.
https://doi.org/10.3133/sir29955294
2. Russell, P. L. Oil Shales of the World: Their Origin, Occurrence, and Exploitation. Pergamon Press, Oxford, England, 1990.
3. Soone, J., Doilov, S. Sustainable utilization of oil shale resources and comparison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.
4. Li, S. The developments of Chinese oil shale activities. Oil Shale, 2012, 29(2), 101–102.
https://doi.org/10.3176/oil.2012.2.01
5. Hrayshat, E. S. Oil shale – an alternative energy source for Jordan. Energ. Source, 2008, 30, 1915–1920.
https://doi.org/10.1080/15567030701468175
6. Francu, J., Harvie, B., Laenen, B., Siirde, A., Veiderma, M., Collins, P., Steiger, F. A Study on the EU Oil Shale Industry – Viewed in the Light of the Estonian Experience. A report by EASAC to the Committee on Industry, Research and Energy of the European Parliament, EASAC, 2007.
7. World Energy Resources, 2013 Survey. World Energy Council, 2013.
8. Saether, O. M., Banks, D., Kirso, U., Bityukova, L., Sorlie, J. E. The chemistry and mineralogy of waste from retorting and combustion of oil shale. In: Energy, Waste, and the Environment – A Geochemical Perspective (Gieré, R., Stille, P., eds.). Bath Geological Society, UK, 2004, 263−284.
https://doi.org/10.1144/GSL.SP.2004.236.01.16
9. Reinik, J., Irha, N., Steinnes, E., Piirisalu, E., Aruoja, V., Schultz, E., Leppänen, M. Characterization of water extracts of oil shale retorting residues from gaseous and solid heat carrier processes. Fuel Process. Technol., 2015, 131, 443−451.
https://doi.org/10.1016/j.fuproc.2014.12.024
10. Kahru, A., Põllumaa, L. Environmental hazard of the waste streams of the Estonian oil shale industry: an ecotoxicological review. Oil Shale, 2006, 23(1), 53−93.
11. Kanarbik, L., Blinova, I., Sihtmäe, M., Künnis-Beres, K., Kahru, A. Environmental effects of soil contamination by shale fuel oils. Environ. Sci. Pollut. Res., 2014, 21(19), 11320–11330.
https://doi.org/10.1007/s11356-014-3043-0
12. Kamenev, I., Munter, R., Pikkov, L., Kekisheva, L. Wastewater treatment in oil shale chemical industry. Oil Shale, 2003, 20(4), 443-457.
13. Kekisheva, L., Smirnov, I., Ostroukhov, N., Petrovich, N., Sitnik, V., Riisalu, H., Soone, Yu. The influence of phenols and other compounds on chemical oxygen demand (COD) of phenolic waters from the Kiviter process. Oil Shale, 2007, 24(4), 573–581.
14. Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419.
15. Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.
https://doi.org/10.3176/oil.2012.4.08
16. Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., Piirisalu, E., Loosaar, J. Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation. Fuel Process. Technol., 2013, 115, 174–181.
https://doi.org/10.1016/j.fuproc.2013.06.001
17. Kirsimäe, K. What shall we do with oil shale processing solid waste? Oil Shale, 2015, 32(3), 201–203.
https://doi.org/10.3176/oil.2015.3.01
18. Reinik, J., Heinmaa, I., Mikkola, J.-P., Kirso, U. Hydrothermal alkaline treatment of oil shale ash for synthesis of tobermorites. Fuel, 2007, 86(5–6), 669–676.
https://doi.org/10.1016/j.fuel.2006.09.010
19. Aksu, Z., Yener, J. The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: comparison with granular activated carbon. J Environ. Sci. Heal. A, 1999, 34(9), 1777–1796.
https://doi.org/10.1080/10934529909376928
20. Sarkar, M., Acharya, P. K. Use of fly ash for the removal of phenol and its analogues from contaminated water. Waste Manage., 2006, 26(6), 559–570.
https://doi.org/10.1016/j.wasman.2005.12.016
21. Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208(1–3), 294–305.
https://doi.org/10.1016/j.desal.2006.06.019
22. Lin, S.-H., Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Hazard. Mater., 2009, 90(3), 1336–1349.
https://doi.org/10.1016/j.jenvman.2008.09.003
23. Ahmaruzzaman, M. Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid. Interfac., 2008, 143(1–2), 48–67.
24. Blissett, R. S., Rowson, N. A. A review of the multi-component utilization of coal fly ash. Fuel, 2012, 97, 1–23.
https://doi.org/10.1016/j.fuel.2012.03.024
25. Zhu, B.-L., Xiu, Z.-M., Liu, N., Bi, H.-T., Lv, C.-X. Adsorption of lead and cadmium ions from aqueous solutions by modified oil shale ash. Oil Shale, 2012, 29(3), 268–278.
https://doi.org/10.3176/oil.2012.3.06
26. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., Xi, Y. Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev., 2015, 141, 105–121.
https://doi.org/10.1016/j.earscirev.2014.11.016
27. Irha, N., Teinemaa, E. Behavior of three- to four-ring PAHs in the presence of oil shale ash and aluminosilicate matter. Polycycl. Aromat. Comp., 2002, 22(3–4), 663–671.
https://doi.org/10.1080/10406630290103825
28. Aljaradin, M. Comparison of retort water treatment methods – a case study in Jordan. VATTEN – J. Water Manage. Res., 2012, 68, 37–41.
29. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C., Soylak, M. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu betonite: Equilibrium, kinetic and thermodynamic study. J. Hazard. Mater., 2009, 172, 353-362.
https://doi.org/10.1016/j.jhazmat.2009.07.019
30. Charkhi, A., Kazemeini, M., Ahmadi, S. J., Kazemian, H. Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties. Powder Technol., 2012, 231, 1–6.
https://doi.org/10.1016/j.powtec.2012.06.041
31. Huang, Y., Ma, X., Liang, G., Yan, H. Adsorption of phenol with modified rectorite from aqueous solution. Chem. Eng. J., 2008, 141(1–3), 1–8.
https://doi.org/10.1016/j.cej.2007.10.009
32. Alkaram, U. F., Mukhlis, A. A., Al-Dujaili, A. H. The removal of phenol from aqueous solutions by adsorption using surfactant modified betonite and kaolinite. J. Hazard. Mater., 2009, 169(1–3), 324–332.
https://doi.org/10.1016/j.jhazmat.2009.03.153
33. Karakasi, O. K., Moutsatsou, A. Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel, 2010, 89(12), 3966–3970.
https://doi.org/10.1016/j.fuel.2010.06.029
34. Carvalho, M. N., da Motta, M., Benachour, M., Sales, D. C. S., Abreu, C. A. M. Evaluation of BTEX and phenol removal from aqueous solution by multi-solute adsorption onto smectite organoclay. J. Hazard. Mater., 2012, 239–240, 95–101.
https://doi.org/10.1016/j.jhazmat.2012.07.057
35. Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., Farhadi, F., Nazmara, S. Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles. Water Air Soil Poll., 2011, 219(1–4), 443–457.
https://doi.org/10.1007/s11270-010-0719-z
36. Vidal, C. B., Raulino, G. S. C., Barros, A. L., Lima, A. C. A., Ribeiro, J. P., Pires, M. J. R., Nascimento, R. F. BTEX removal from aqueous solutions by HDTMA-modified Y zeolite. J. Environ. Manage., 2012, 112, 178–185.
https://doi.org/10.1016/j.jenvman.2012.07.026
37. Schieder, D., Dobias, B., Klumpp, E., Schwuger, M. J. Adsorption and solubilisation of phenols in the hexadecyltrimethylammonium chloride adsorbed layer on quartz and corundum. Colloid. Surface. A, 1994, 88(1), 103–111.
https://doi.org/10.1016/0927-7757(94)80090-1
38. Lee, K. Y., Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106–126.
https://doi.org/10.1016/j.progpolymsci.2011.06.003
39. Shim, J., Lim, J.-M., Shea, P. J., Oh, B.-T. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads. J. Hazard. Mater., 2014, 272, 129–136.
https://doi.org/10.1016/j.jhazmat.2014.03.010
40. Iuga, C., Sainz-Díaz, C. I., Vivier-Bunge, A. Hydroxyl radical initiated oxidation of formic acid on mineral aerosols surface: a mechanistic, kinetic and spectroscopic study. Environ. Chem., 2015, 12(2), 236–244.
https://doi.org/10.1071/EN14138
41. Fiore, S., Zanetti, M. C. Sorption of phenols: influence of groundwater pH and soil organic carbon content. Am. J. Environ. Sci., 2009, 5(4), 547–555.
https://doi.org/10.3844/ajessp.2009.547.555
42. Viraraghavan, T., De Maria Alfaro, F. Adsorption of phenol from wastewater by peat, fly ash and bentonite. J. Hazard. Mater., 1998, 57(1–3), 59–70.
https://doi.org/10.1016/S0304-3894(97)00062-9
43. Gupta, V. K., Sharma, S., Yadav, I. S., Mohan, D. Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. J. Chem. Technol. Biot., 1998, 71(2), 180–186.
https://doi.org/10.1002/(SICI)1097-4660(199802)71:2<180::AID-JCTB798>3.0.CO;2-I
44. Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energ. Combust., 2010, 36(3), 327–363.
https://doi.org/10.1016/j.pecs.2009.11.003
45. Jain, A. K., Gupta, V. K., Jain, S., Has, S., Suhas. Removal of chlorophenols using industrial wastes. Environ. Sci. Technol., 2004, 38(4), 1195–1200.
https://doi.org/10.1021/es034412u
46. Sarkar, M., Acharya, P. K. Use of fly ash for the removal of phenol and its analogues from contaminated water. Waste Manage., 2006, 26(6), 559–570.
https://doi.org/10.1016/j.wasman.2005.12.016
https://doi.org/10.1016/S0927-7757(00)00702-0