ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
GRANULATION OF OIL SHALE ASH WITH SODIUM ALGINATE FOR THE REMOVAL OF PHENOLS FROM SHALE OIL WASTEWATER; pp. 265–278
PDF | https://doi.org/10.3176/oil.2018.3.06

Authors
Janek Reinik, NATALYA IRHA, EILIV STEINNES, IVO HEINMAA
Abstract

Oil shale ash (OSA) from the circulating fluidized bed (CFB) boiler was granulated and used as a sorbent for the removal of phenols from shale oil wastewater. The method for preparation of the sorbent involved washing of the ash, mixing with clay, gelling the mixture with sodium alginate solu­tion, solidifying the granules in barium chloride solution, drying and calcina­tion of the granules and modifying with a surfactant – hexadecyltrimethyl­ammonium bromide (CTAB). The sorbent was characterized by specific sur­face area (BETN2), X-ray diffraction (XRD) and 29Si Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR) analysis. Batch adsorp­tion experi­ments were conducted to determine the phenol adsorption iso­therm at 20 °C and removal of water-soluble phenols from phenolic shale oil processing wastewater. Removal of phenols from wastewater was found to be 50–65% under given conditions.

References

1.       Dyni, J. R. Geology and Resources of Some World Oil-Shale Deposits. U.S. Geological Survey Scientific Investigations Report 2005-5294, Reston, Virginia, 2006.
https://doi.org/10.3133/sir29955294

2.       Russell, P. L. Oil Shales of the World: Their Origin, Occurrence, and Exploita­tion. Pergamon Press, Oxford, England, 1990.

3.       Soone, J., Doilov, S. Sustainable utilization of oil shale resources and com­parison of contemporary technologies used for oil shale processing. Oil Shale, 2003, 20(3S), 311–323.

4.       Li, S. The developments of Chinese oil shale activities. Oil Shale, 2012, 29(2), 101–102.
https://doi.org/10.3176/oil.2012.2.01

5.       Hrayshat, E. S. Oil shale – an alternative energy source for Jordan. Energ. Source, 2008, 30, 1915–1920.
https://doi.org/10.1080/15567030701468175

6.       Francu, J., Harvie, B., Laenen, B., Siirde, A., Veiderma, M., Collins, P., Steiger, F. A Study on the EU Oil Shale Industry – Viewed in the Light of the Estonian Experience. A report by EASAC to the Committee on Industry, Research and Energy of the European Parliament, EASAC, 2007.

7.       World Energy Resources, 2013 Survey. World Energy Council, 2013.

8.       Saether, O. M., Banks, D., Kirso, U., Bityukova, L., Sorlie, J. E. The chemistry and mineralogy of waste from retorting and combustion of oil shale. In: Energy, Waste, and the Environment – A Geochemical Perspective (Gieré, R., Stille, P., eds.). Bath Geological Society, UK, 2004, 263−284.
https://doi.org/10.1144/GSL.SP.2004.236.01.16

9.       Reinik, J., Irha, N., Steinnes, E., Piirisalu, E., Aruoja, V., Schultz, E., Leppä­nen, M. Characterization of water extracts of oil shale retorting residues from gaseous and solid heat carrier processes. Fuel Process. Technol., 2015, 131, 443−451.
https://doi.org/10.1016/j.fuproc.2014.12.024

10.   Kahru, A., Põllumaa, L. Environmental hazard of the waste streams of the Estonian oil shale industry: an ecotoxicological review. Oil Shale, 2006, 23(1), 53−93.

11.   Kanarbik, L., Blinova, I., Sihtmäe, M., Künnis-Beres, K., Kahru, A. Environ­mental effects of soil contamination by shale fuel oils. Environ. Sci. Pollut. Res., 2014, 21(19), 11320–11330.
https://doi.org/10.1007/s11356-014-3043-0

12.   Kamenev, I., Munter, R., Pikkov, L., Kekisheva, L. Wastewater treatment in oil shale chemical industry. Oil Shale, 2003, 20(4), 443-457.

13.   Kekisheva, L., Smirnov, I., Ostroukhov, N., Petrovich, N., Sitnik, V., Riisalu, H., Soone, Yu. The influence of phenols and other compounds on chemical oxygen demand (COD) of phenolic waters from the Kiviter process. Oil Shale, 2007, 24(4), 573–581.

14.   Kuusik, R., Uibu, M., Kirsimäe, K. Characterization of oil shale ashes formed at industrial-scale CFBC boilers. Oil Shale, 2005, 22(4S), 407–419.

15.   Kuusik, R., Uibu, M., Kirsimäe, K., Mõtlep, R., Meriste, T. Open-air deposition of Estonian oil shale ash: formation, state of art, problems and prospects for the abatement of environmental impact. Oil Shale, 2012, 29(4), 376–403.
https://doi.org/10.3176/oil.2012.4.08

16.   Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., Piirisalu, E., Loosaar, J. Changes in trace element contents in ashes of oil shale fueled PF and CFB boilers during operation. Fuel Process. Technol., 2013, 115, 174–181.
https://doi.org/10.1016/j.fuproc.2013.06.001

17.   Kirsimäe, K. What shall we do with oil shale processing solid waste? Oil Shale, 2015, 32(3), 201–203.
https://doi.org/10.3176/oil.2015.3.01

18.   Reinik, J., Heinmaa, I., Mikkola, J.-P., Kirso, U. Hydrothermal alkaline treat­ment of oil shale ash for synthesis of tobermorites. Fuel, 2007, 86(5–6), 669–676.
https://doi.org/10.1016/j.fuel.2006.09.010

19.   Aksu, Z., Yener, J. The usage of dried activated sludge and fly ash wastes in phenol biosorption/adsorption: comparison with granular activated carbon. J Environ. Sci. Heal. A, 1999, 34(9), 1777–1796.
https://doi.org/10.1080/10934529909376928

20.   Sarkar, M., Acharya, P. K. Use of fly ash for the removal of phenol and its analogues from contaminated water. Waste Manage., 2006, 26(6), 559–570.
https://doi.org/10.1016/j.wasman.2005.12.016

21.   Al-Qodah, Z., Shawaqfeh, A. T., Lafi, W. K. Adsorption of pesticides from aqueous solutions using oil shale ash. Desalination, 2007, 208(1–3), 294–305.
https://doi.org/10.1016/j.desal.2006.06.019

22.   Lin, S.-H., Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Hazard. Mater., 2009, 90(3), 1336–1349.
https://doi.org/10.1016/j.jenvman.2008.09.003

23.   Ahmaruzzaman, M. Adsorption of phenolic compounds on low-cost adsorbents: A review. Adv. Colloid. Interfac., 2008, 143(1–2), 48–67.

24.   Blissett, R. S., Rowson, N. A. A review of the multi-component utilization of coal fly ash. Fuel, 2012, 97, 1–23.
https://doi.org/10.1016/j.fuel.2012.03.024

25.   Zhu, B.-L., Xiu, Z.-M., Liu, N., Bi, H.-T., Lv, C.-X. Adsorption of lead and cadmium ions from aqueous solutions by modified oil shale ash. Oil Shale, 2012, 29(3), 268–278.
https://doi.org/10.3176/oil.2012.3.06

26.   Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., Xi, Y. Q. A comprehensive review on the applications of coal fly ash. Earth-Sci. Rev., 2015, 141, 105–121.
https://doi.org/10.1016/j.earscirev.2014.11.016

27.   Irha, N., Teinemaa, E. Behavior of three- to four-ring PAHs in the presence of oil shale ash and aluminosilicate matter. Polycycl. Aromat. Comp., 2002, 22(3–4), 663–671.
https://doi.org/10.1080/10406630290103825

28.   Aljaradin, M. Comparison of retort water treatment methods – a case study in Jordan. VATTEN – J. Water Manage. Res., 2012, 68, 37–41.

29.   Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C., Soylak, M. Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu betonite: Equilibrium, kinetic and thermodynamic study. J. Hazard. Mater., 2009, 172, 353-362.
https://doi.org/10.1016/j.jhazmat.2009.07.019

30.   Charkhi, A., Kazemeini, M., Ahmadi, S. J., Kazemian, H. Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties. Powder Technol., 2012, 231, 1–6.
https://doi.org/10.1016/j.powtec.2012.06.041

31.   Huang, Y., Ma, X., Liang, G., Yan, H. Adsorption of phenol with modified rectorite from aqueous solution. Chem. Eng. J., 2008, 141(1–3), 1–8.
https://doi.org/10.1016/j.cej.2007.10.009

32.   Alkaram, U. F., Mukhlis, A. A., Al-Dujaili, A. H. The removal of phenol from aqueous solutions by adsorption using surfactant modified betonite and kaolinite. J. Hazard. Mater., 2009, 169(1–3), 324–332.
https://doi.org/10.1016/j.jhazmat.2009.03.153

33.   Karakasi, O. K., Moutsatsou, A. Surface modification of high calcium fly ash for its application in oil spill clean up. Fuel, 2010, 89(12), 3966–3970.
https://doi.org/10.1016/j.fuel.2010.06.029

34.   Carvalho, M. N., da Motta, M., Benachour, M., Sales, D. C. S., Abreu, C. A. M. Evaluation of BTEX and phenol removal from aqueous solution by multi-solute adsorption onto smectite organoclay. J. Hazard. Mater., 2012, 239–240, 95–101.
https://doi.org/10.1016/j.jhazmat.2012.07.057

35.   Seifi, L., Torabian, A., Kazemian, H., Bidhendi, G. N., Azimi, A. A., Farhadi, F., Nazmara, S. Kinetic study of BTEX removal using granulated surfactant-modified natural zeolites nanoparticles. Water Air Soil Poll., 2011, 219(1–4), 443–457.
https://doi.org/10.1007/s11270-010-0719-z

36.   Vidal, C. B., Raulino, G. S. C., Barros, A. L., Lima, A. C. A., Ribeiro, J. P., Pires, M. J. R., Nascimento, R. F. BTEX removal from aqueous solutions by HDTMA-modified Y zeolite. J. Environ. Manage., 2012, 112, 178–185.
https://doi.org/10.1016/j.jenvman.2012.07.026

37.   Schieder, D., Dobias, B., Klumpp, E., Schwuger, M. J. Adsorption and solubilisa­tion of phenols in the hexadecyltrimethylammonium chloride adsorbed layer on quartz and corundum. Colloid. Surface. A, 1994, 88(1), 103–111.
https://doi.org/10.1016/0927-7757(94)80090-1

38.   Lee, K. Y., Mooney, D. J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106–126.
https://doi.org/10.1016/j.progpolymsci.2011.06.003

39.   Shim, J., Lim, J.-M., Shea, P. J., Oh, B.-T. Simultaneous removal of phenol, Cu and Cd from water with corn cob silica-alginate beads. J. Hazard. Mater., 2014, 272, 129–136.
https://doi.org/10.1016/j.jhazmat.2014.03.010

40.   Iuga, C., Sainz-Díaz, C. I., Vivier-Bunge, A. Hydroxyl radical initiated oxida­tion of formic acid on mineral aerosols surface: a mechanistic, kinetic and spectro­scopic study. Environ. Chem., 2015, 12(2), 236–244.
https://doi.org/10.1071/EN14138

41.   Fiore, S., Zanetti, M. C. Sorption of phenols: influence of groundwater pH and soil organic carbon content. Am. J. Environ. Sci., 2009, 5(4), 547–555.
https://doi.org/10.3844/ajessp.2009.547.555

42.   Viraraghavan, T., De Maria Alfaro, F. Adsorption of phenol from wastewater by peat, fly ash and bentonite. J. Hazard. Mater., 1998, 57(1–3), 59–70.
https://doi.org/10.1016/S0304-3894(97)00062-9

43.   Gupta, V. K., Sharma,  S., Yadav, I. S., Mohan, D. Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. J. Chem. Technol. Biot., 1998, 71(2), 180–186.
https://doi.org/10.1002/(SICI)1097-4660(199802)71:2<180::AID-JCTB798>3.0.CO;2-I

44.   Ahmaruzzaman, M. A review on the utilization of fly ash. Prog. Energ. Combust., 2010, 36(3), 327–363.
https://doi.org/10.1016/j.pecs.2009.11.003

45.   Jain, A. K., Gupta, V. K., Jain, S., Has, S., Suhas. Removal of chlorophenols using industrial wastes. Environ. Sci. Technol., 2004, 38(4), 1195–1200.
https://doi.org/10.1021/es034412u

46.   Sarkar, M., Acharya, P. K. Use of fly ash for the removal of phenol and its analogues from contaminated water. Waste Manage., 2006, 26(6), 559–570.
https://doi.org/10.1016/j.wasman.2005.12.016

47.  Tarasevich,  Y. I. Porous structure and adsorption properties of natural porous coal. Colloid. Surface. A, 2001, 176(2–3), 267–272.
https://doi.org/10.1016/S0927-7757(00)00702-0

Back to Issue