ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1984
 
Oil Shale cover
Oil Shale
ISSN 1736-7492 (Electronic)
ISSN 0208-189X (Print)
Impact Factor (2022): 1.9
SEDIMENTARY AND GEOCHEMICAL CHARACTERISTICS OF OIL SHALE IN THE PERMIAN LUCAOGOU FORMATION IN THE SOUTHEASTERN JUNGGAR BASIN, NORTHWEST CHINA: IMPLICATIONS FOR SEDIMENTARY ENVIRONMENTS; pp. 97–112
PDF | https//doi.org/10.3176/oil.2018.2.01

Authors
Mingming Zhang, ZHAO LI, JUN YIN
Abstract

In this study, the sedimentary and geochemical characteristics of oil shale in the Lower and the Upper Member of the Permian Lucaogou Formation in the southeastern Junggar Basin, Northwest China, were investigated. Mineral and bulk chemical compositions, sedimentary facies and distribution of oil shale show that in the Lower Member it is rich in organic matter, but in the Upper Member, organic-poor. The distribution area of deep lake subfacies and oil shale in the Lower Member is larger than that in the Upper Member. The sedimentary modes of these two members were estimated using geochemical parameters, such as Sr/Cu, the chemical index of alteration (CIA), Ni/Co, V/Sc and (C27 + C28)/C29 regular steranes. The organic-rich oil shale in the Lower Member of the Lucaogou Formation formed in the more humid climate and under oxidative conditions, its organic matter derived mainly from algae. On the other hand, the organic-poor oil shale in the formation’s Upper Member formed in the humid climate and under more oxidative conditions, while the input of land plants to its organic matter was high and that of algae low.

References

1.       Li, C. B., Guo, W., Song, Y. Q., Du, J. F. The genetic type of the oil shale at the northern foot of Bogda Mountain, Xinjiang and prediction for favorable areas. Journal of Jilin University (Earth Science Edition), 2006, 36(6), 949–953 (in Chinese with English abstract).

2.       Xie, X. M., Volkman, J. K., Qin, J. Z., Borjigin, T., Bian, L. Z., Zhen, L. J. Petrology and hydrocarbon potential of microalgal and macroalgal dominated oil shales from the Eocene Huadian Formation, NE China. Int. J. Coal Geol., 2014, 124, 36–47.
https://doi.org/10.1016/j.coal.2013.12.013

3.       Zhang, M. M., Liu, Z. J., Xu, S. C., Sun, P. C., Hu, X. F. Element response to the ancient lake information and its evolution history of argillaceous source rocks in the Lucaogou Formation in Sangonghe area of southern margin, Junggar Basin. J. Earth Sci., 2013, 24(6), 987–996.
https://doi.org/10.1007/s12583-013-0392-4

4.       Zhang, M. M., Liu, Z. J., Xu, S. Z., Hu, X. F., Sun, P. C., Wang, Y. L. Analysis for the Paleosalinity and lake-level changes of the oil shale measures in the Lucaogou Formation in the Sangonghe Area of Southern Margin, Junggar Basin. Petroleum Sci. Technol., 2014, 32(16), 1973–1980.
https://doi.org/10.1080/10916466.2012.742541

5.       Zhang, M. M., Liu, Z. J., Qiu, H. J., Xu, Y. B. Characterictics of organic matter of oil shale in sequence stratigraphic framework at the northern foot of Bogda Mountain, China. Oil Shale, 2016, 33(1), 31–44.
https://doi.org/10.3176/oil.2016.1.03

6.       Li, J. J. Study on the Oil Shale Geochemistry of Permian Lucaogou Formation in the Northern Bogda Mountain. PhD thesis, China University of Geosciences (Beijing), 2009, 20–60 (in Chinese with English abstract).

7.       Bai, Y. L. Prospects for development of oil shale deposits in southeastern margin of Junggar basin. Xinjiang Petroleum Geology, 2008, 29(4), 462–465 (in Chinese with English abstract).

8.       Yang, W., Feng, Q., Liu, Y., Tabor, N., Miggins, D., Crowley, J. L., Lin, J., Thomas, S. Depositional environments and cyclo- and chronostratigraphy of uppermost Carboniferous-Lower Triassic fluvial-lacustrine deposits, southern Bogda Mountains, NW China – A terrestrial paleoclimatic record of mid-latitude NE Pangea. Global Planet. Change, 2010, 73(1–2), 15–113.
https://doi.org/10.1016/j.gloplacha.2010.03.008

9.       Luo, Q., George, S. C., Xu, Y., Zhong, N. N. Organic geochemical charac­teris­tics of the Mesoproterozoic Hongshuizhuang Formation from northern China: implications for thermal maturity and biological sources. Org. Geochem., 2016, 99, 23–37.
https://doi.org/10.1016/j.orggeochem.2016.05.004

10.    DZ/T 0223-2001, 2001. Geology Mineral Industry Standard of P.R. China. The General Analysis Rules for Inductively Coupled Plasma Mass Spectrometry (in Chinese).

11.    Zhang, M. M., Li, Z. Thermal maturity of the Permian Lucaogou Formation organic-rich shale at the northern foot of Bogda Mountains, Junggar Basin (NW China): Effective assessments from organic geochemistry. Fuel, 2018, 211, 278–290.
https://doi.org/10.1016/j.fuel.2017.09.069

12.    Peters, K. E., Walters, C. C., Moldowan, J. M. The Biomarker Guide, Bio­markers and Isotopes in Petroleum Exploration and Earth History, 2nd ed. Cambridge University Press, 2005.

13.    Yang, R., Cao, J., Hu, G., Fu, X. G. Organic geochemistry and petrology of Lower Cretaceous black shales in the Qiangtang Basin, Tibet: Implications for hydrocarbon potential. Org. Geochem., 2015, 86, 55–70.
https://doi.org/10.1016/j.orggeochem.2015.06.006

14.    Yang, R., Cao, J., Hu, G., Bian, L. Z., Hu, K., Fu, X. G. Marine to brackish depositional environments of the Jurassic-Cretaceous Suowa Formation, Qiangtang Basin (Tibet), China. Palaeogeogr. Palaeocl., 2017, 473, 41–56.
https://doi.org/10.1016/j.palaeo.2017.02.031

15.    Fu, X., Jian, W., Chen, W., Feng, X., Wang, D., Song, C., Zeng, S. Organic accumulation in lacustrine rift basin: constraints from mineralogical and multiple geochemical proxies. Int. J. Earth Sci., 2015, 104(2), 495–511.
https://doi.org/10.1007/s00531-014-1089-3

16.    Jia, J. L, Bechtel, A., Liu, Z. J., Strobl, S. A. I., Sun, P. C, Sachsenhofer, R. F. Oil shale formation in the Upper Cretaceous Nenjiang Formation of the Songliao Basin (NE China): implications from organic and inorganic geo­chemical analyses. Int. J. Coal Geol., 2013, 113, 11–26.
https://doi.org/10.1016/j.coal.2013.03.004

17.    Lerman, A. Lakes: Chemistry, Geology, Physics. Geological Publishing House, Beijing, 1989, 184–187 (translated into Chinese by S. M. Wang).

18.    Deng, H. W., Qian, K. Sedimentary Geochemistry and Environment Analysis. Gansu Technology Publishing House, Lanzhou, 1993 (in Chinese).

19.    Nesbitt, H. W., Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, 299(5885), 715–717.
https://doi.org/10.1038/299715a0

20.    McLennan, S. M., Hemming, S., McDaniel, D. K., Hanson, G. N. Geochemical approaches to sedimentation, provenance, and tectonics. In: Processes Control­ling the Composition of Clastic Sediments (Johnsson, M. J., Basu, A., eds.), Geol. Soc. Am. Spec. Pap., 1993, 284, 21–40.
https://doi.org/10.1130/SPE284-p21

21.    Bock, B., McLennan, S. M., Hanson, G. N. Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill formation) and the Taconian orogeny in New England. Sedimentology, 1998, 45(4), 635–655.
https://doi.org/10.1046/j.1365-3091.1998.00168.x

22.    Bai, Y., Liu, Z., Sun, P., Liu, R., Hu, X., Zhao, H., Xu, Y. Rare earth and major element geochemistry of Eocene fine-grained sediments in oil shale- and coal-bearing layers of the Meihe Basin, Northeast China. J. Asian Earth Sci., 2015, 97(Part A), 89–101.

23.    Zonneveld, K. A. F., Versteegh, G. J. M., Kasten. S., Eglinton, T, I., Emeis, K. C., Huguet, C., Koch, B. P., de Lange, G. J., de Leeuw, J. W., Middelburg, J. J., Mollenhauer, G., Prahl, F. G., Prahl, F. G., Rethemeyer, J., Wakeham, S. G. Selective preservation of organic matter in marine environ­ments; processes and impact on the sedimentary record. Biogeosciences, 2010, 7, 483–511.
https://doi.org/10.5194/bg-7-483-2010

24.    Kennedy, M. J., Pevear, D. R., Hill, R. J. Mineral surface control of organic carbon in black shale. Science, 2002, 295(5555), 657–660.
https://doi.org/10.1126/science.1066611

25.    Didyk, B. M., Simoneit, B. R. T., Brassell, S. C., Eglinton, G. Organic geo­chemical indicators of paleo-environmental conditions of sedimentation. Nature, 1978, 272(5660), 216–222.
https://doi.org/10.1038/272216a0

26.    Bechtel, A., Jia, J. L., Strobl, S. A. I., Sachsenhofer, R. F., Liu, Z. J., Gratzer, R., Puttmann, W. Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org. Geochem., 2012, 46, 76–95.
https://doi.org/10.1016/j.orggeochem.2012.02.003

27.    Jones, B., Manning, D. A. C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem. Geol., 1994, 111(1–4), 111–129.
https://doi.org/10.1016/0009-2541(94)90085-X

28.    Wei, H. Y. Productivity and redox proxies of palaeo-oceans: An overview of elementary geochemistry. Sedimentary Geology and Tethyan Geology, 2012, 32(2), 76–88 (in Chinese with English abstract).

29.    Powell, W. Comparison of geochemical and distinctive mineralogical features associated with the Kinzers and Burgess Shale formations and their associated units. Palaeogeogr. Palaeocl., 2009, 277(1–2), 127–140.
https://doi.org/10.1016/j.palaeo.2009.02.016

30.    Kimura, H., Watanabe, Y. Oceanic anoxia at the Precambrian-Cambrian boundary. Geology, 2001, 29(11), 995–998.
https://doi.org/10.1130/0091-7613(2001)029<0995:OAATPC>2.0.CO;2

31.    Talbot, M. R. The origins of lacustrine oil source rocks: evidence from the lakes of tropical Africa. Geol. Soc. Spec. Publ. (London,), 1988, 40(1), 29–43.

32.    Qi, Z. L., Li, Y. L., Wang, C. S., Sun, T., Zhang, J. H. Organic geochemistry of the Paleocene-Eocene oil shales of the Gongjue Formation, Nangqian Basin, east-central Tibetan Plateau. Oil Shale, 2017, 34(1), 1–14.
https://doi.org/10.3176/oil.2017.1.01

33.    Hakimi, M. H., Abdullah, W. H., Alqudah, M., Makeen, Y. M., Mustapha, K. A. Organic geochemical and petrographic characteristics of the oil shales in the Lajjun area, Central Jordan: Origin of organic matter input and preservation conditions. Fuel, 2016, 181, 34–45.
https://doi.org/10.1016/j.fuel.2016.04.070

34.    Chen, C., Mu, C. L., Zhou, K. K., Liang, W., Ge, X. Y., Wang, X. P., Wang, Q. Y., Zheng, B. S. The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China. Mar. Petrol. Geol., 2016, 76, 159–175.
https://doi.org/10.1016/j.marpetgeo.2016.04.022

35.    Bellanca, A., Masetti, D., Neri, R., Venezia, F. Geochemical and sedi­mento­logical evidence of productivity cycles recorded in Toarcian black shales from the Belluno Basin, Southern Alps, northern Italy. J. Sediment. Res., 1999, 69(2), 466–476.
https://doi.org/10.2110/jsr.69.466

36.    Volkman, J. K. A review of sterol markers for marine and terrigenous organic matter. Org. Geochem., 1986, 9(2), 83–99.
https://doi.org/10.1016/0146-6380(86)90089-6

37.    Zeng, S., Wang, J., Fu, X. G., Chen, W. B., Feng, X. L., Wang, D., Song, C. Y., Wang, Z. W. Geochemical characteristics, redox conditions, and organic matter accumulation of marine oil shale from the Changliang Mountain area, northern Tibet, China. Mar. Petrol. Geol., 2015, 64, 203–221.
https://doi.org/10.1016/j.marpetgeo.2015.02.031

38.    Hakimi, M. H., Abdullah, W. H., Alqudah, M., Makeen, Y. M., Mustapha, K. A. Reducing marine and warm climate conditions during the Late Cretaceous, and their influence on organic matter enrichment in the oil shale deposits of North Jordan. Int. J. Coal Geol., 2016, 165, 173–189.
https://doi.org/10.1016/j.coal.2016.08.015

39.    Mustafa, K. A., Sephton, M. A., Watson, J. S., Spathopoulos, F., Krzywiec, P. Organic geochemical characteristics of black shales across the Ordovician-Silurian boundary in the Holy Cross Mountains, central Poland. Mar. Petrol. Geol., 2015, 66(Part 4), 1042–1055.
https://doi.org/10.1016/j.marpetgeo.2015.08.018

40.  Yeasmin, R., Chen, D., Fu, Y., Wang, J. G., Guo, Z. H., Guo, C. Climatic-oceanic forcing on the organic accumulation across the shelf during the Early Cambrian (Age 2 through 3) in the mid-upper Yangtze Block, NE Guizhou, South China. J. Asian Earth Sci., 2017, 134, 365–386.
https://doi.org/10.1016/j.jseaes.2016.08.019

Back to Issue